Nav: Home

First-of-kind study suggests cover crop mixtures increase agroecosystem services

September 08, 2016

Planting a multi-species mixture of cover crops -- rather than a cover crop monoculture -- between cash crops, provides increased agroecosystem services, or multifunctionality, according to researchers in Penn State's College of Agricultural Sciences.

That was the conclusion drawn from a two-year study of 18 cover-crop treatments, ranging in diversity from one to eight plant species. Cover crops were grown at the Penn State Russell E. Larson Agricultural Research Center preceding a corn crop. The researchers measured five benefits provided by cover crops - ecosystem services -- in each cover crop system to assess the relationship between species.

Those services included weed suppression and nitrogen retention during the cover-crop season, cover-crop aboveground biomass, inorganic nitrogen supply during the subsequent cash-crop season and subsequent corn yield.

The study was the first field-based test of the relationship between cover-crop species and multifunctionality -- the quality of cover crops to simultaneously provide multiple benefits -- noted research team member Jason Kaye, professor of soil biogeochemistry. Never before had this relationship been examined and analyzed in a crop rotation.

As continued research yields more precise information about optimal cover-crop seed mixtures and planting rates, Kaye predicted, farmers will deploy this strategy to enhance soil quality, control weed growth, manage critical nutrients such as nitrogen, improve crop yields and reduce nutrient runoff.

"This kind of ecological study identifying a positive relationship between biodiversity and ecosystem services suggests that higher plant diversity will increase services from agroecosystems, and that has immediate implications for management practices and policies for sustainable agriculture, including Chesapeake Bay water quality," Kaye said. "In a corn production system, simply increasing cover-crop species richness will have a small impact on agroecosystem services, but designing mixtures that maximize functional diversity may lead to agroecosystems with greater multifunctionality."

Cover-crop species grown in monocultures and in mixtures during the study included oats, canola, sunn hemp, soybean, barley, perennial ryegrass, forage radish, cereal rye, millet, sudangrass, red clover and hairy vetch.

The research, which is published in the September issue of the Journal of Applied Ecology, shows that designing cover-crop mixes will involve trade-offs to achieve desired levels of ecosystem services, explained lead researcher Denise Finney, now an assistant professor of biology at Ursinus College, in Collegeville, Pennsylvania. She conducted the Penn State study while pursuing her doctoral degree, advised by Kaye.

"For example, nitrogen cycling is an area where trade-offs can occur among services," she said. "In our research, we have found that cover-crop mixtures that excel at nitrogen retention can decrease soil nitrogen supply to cash crops and limit their yield. However, bi-cultures -- correctly formulated to combine legume and nonlegume species -- can both supply inorganic nitrogen and retain nitrogen."

Finney said the researchers aimed to address two critical questions related to cover crops and multifunctionality: Does including more species in a cover crop system lead to greater multifunctionality? And are there guiding principles for cover-crop mixture assembly that will lead to increases in net multifunctionality? Cross-disciplinary, follow-on studies planned and underway on Pennsylvania and New York farms, led by Kaye, are intended to build on the knowledge gained through this study.

The ultimate goal is to provide the agriculture industry with evidence-based information that will help farmers to design cover-crop mixtures that provide desired services using species combinations that augment biodiversity while minimizing economic or management constraints, Finney explained. Increasing ecosystem-service provision from agroecosystems is an emerging goal of contemporary agriculture.

"Exploiting biodiversity to meet this goal is a promising approach," she said. "However, considerable research is needed to identify the functional traits that shape cover-crop community dynamics and to depict trade-offs among services in multifunctionality metrics."
-end-
Northeast Sustainable Agriculture Research and Education, the U.S. Department of Agriculture and the ARCS Foundation supported this work.

Penn State

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...