Nav: Home

Forecasting climate change's effects on biodiversity hindered by lack of data

September 08, 2016

WEST LAFAYETTE, Ind. - An international group of biologists is calling for data collection on a global scale to improve forecasts of how climate change affects animals and plants.

Accurate model predictions can greatly aid efforts to protect biodiversity from disturbances such as climate change and urban sprawl by helping scientists and decision-makers better understand, anticipate and respond to threats that imperil species and ecosystems.

In a paper published in Science on Thursday (Sept. 8), biologists cite a critical lack of data on key biological mechanisms - such as how animals and plants spread during their lifetime and how they evolve in response to changes in the environment - as the main obstacle to improving models' ability to forecast species' response to climate change.

"This paper is a call to arms," said Patrick Zollner, article co-author and Purdue associate professor of wildlife science. "The world is in dire circumstances. We're losing a lot of species, and we're largely unaware why. How do we need to rethink the kind of data we're collecting so we can take advantage of modern modeling tools to understand the outcomes of climate change for ecological systems? This could help us forestall losing wildlife that we later deeply regret."

The group outlines two key problems that hinder the capability of current models to make realistic predictions about biological responses to climate change.

Most models are descriptive, based on statistical correlations and observations, and fail to capture the underlying processes that produce observed changes. For example, a descriptive model might show that lynx in the northern U.S. are declining while bobcat populations in the same region are on the rise. Understanding what is driving this change requires a different sort of model, one that incorporates biological mechanisms. A mechanistic model that accounts for how warming temperatures affect snow depth, for instance, could provide insights into why bobcats - better adapted to habitats with less snow - are gaining a competitive edge over lynx. But 77 percent of current models of climate change's impacts on wildlife do not include biological mechanisms.

Another challenge is that as models have grown in sophistication, they have far outpaced data collection. Put another way, a model is like a state-of-the-art kitchen, but the cupboards are bare.

"We can now build videogame-like environments with computers where we can create multiple versions of Earth and ask what the implications under different scenarios are," Zollner said. "But our ability to learn from these tools is constrained by the kinds of data we have."

The group advanced several proposals on how to improve models, collect missing data and leverage available data to make broader predictions.

They identified six biological mechanisms that influence wildlife's responses to climate change: physiology; demography and life history; evolutionary potential and adaptation; interactions between species; movement over land or water; and responses to changes in the environment. They ranked the information needed to account for these mechanisms in models and suggested proxies for data that are missing or hard to collect.

A globally coordinated effort to fill data gaps could greatly advance improvements in models and informed conservation approaches, the researchers wrote. They point to the Intergovernmental Panel on Climate Change and its consistent improvements in climate change modeling as a valuable blueprint for such a project.

But local and regional conservation groups need not wait for a global body to coalesce to start using a mechanistic approach in their own region, Zollner said.

"If the ideas put forth in this paper start to be adopted and integrated into climate change work in a grass roots way, that could make a big difference in a region and could scale up over time," he said.

Citizen scientists also have an important role to play in pitching in with data collection, he said.

Working with citizen scientists offers "an opportunity to get huge amounts of data, and it's foolish not to take advantage of it," Zollner said. "The data might not be as rigorous and needs to be treated differently, but it's one more source of valuable information."
-end-
The study is available at http://dx.doi.org/10.1126/science.aad8466.

Purdue University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...