Nav: Home

Critical information needed in fight to save wildlife

September 08, 2016

With global temperatures rising, an international group of 22 top biologists is calling for a coordinated effort to gather important species information that is urgently needed to improve predictions for the impact of climate change on future biodiversity.

Current predictions fail to account for important biological factors like species competition and movement that can have a profound influence on whether a plant or animal survives changes to its environment, the scientists say in the September 9 issue of the journal Science. While more sophisticated forecasting models exist, much of the detailed species information that is needed to improve predictions is lacking.

"Right now, we're treating a mouse the same way as an elephant or a fish or a tree. Yet we know that those are all very different organisms and they are going to respond to their environment in different ways," says University of Connecticut Ecologist Mark Urban, the Science article's lead author. "We need to pull on our boots, grab our binoculars, and go back into the field to gather more detailed information if we are going to make realistic predictions."

The 22 top biologists affiliated with the article identify six key types of biological information, including life history, physiology, genetic variation, species interactions, and dispersal, that will significantly improve prediction outcomes for individual species. Obtaining that information will not only help the scientific community better identify the most at-risk populations and ecosystems, the scientists say, it will also allow for a more targeted distribution of resources as global temperatures continue to rise at a record rate.

Current climate change predictions for biodiversity draw on broad statistical correlations and can vary widely, making it difficult for policymakers and others to respond accordingly. Many of those predictions tend not to hold up over time if they fail to account for the full range of biological factors that can influence an organism's survival rate: species demographics, competition from other organisms, species mobility, and the capacity to adapt and evolve.

"We haven't been able to sufficiently determine what species composition future ecosystems will have, and how their functions and services for mankind will change," says co-author Dr. Karin Johst of the Helmholtz Centre for Environmental Research and the German Centre for Integrative Biodiversity Research. "This is because current ecological models often do not include important biological processes and mechanisms: so far only 23 percent of the reviewed studies have taken into account biological mechanisms."

Generating more accurate predictions is essential for global conservation efforts. Many species are already moving to higher ground or toward the poles to seek cooler temperatures as global temperatures rise. But the capacity of different organisms to survive varies greatly. Some species of frog, for instance, can traverse their terrain for miles to remain in a habitable environment. Other species, such as some types of salamander, are less mobile and capable of moving only a few meters over generations.

"New Zealand's strong foundation in ecological research will help," explains study co-author Dr. William Godsoe, a Lincoln University lecturer and member of New Zealand's Bio-Protection Research Centre. "One of our hopes is to build on these strengths and highlight new opportunities to improve predictions by explicitly considering evolution, interactions among species, and dispersal." This will aid in the development of strategies to manage impacts on species and ecosystems before they become critical.

With more than 8.7 million species worldwide, gathering the necessary biological information to improve predictions is a daunting task. Even a sampling of key species would be beneficial, the authors say, as the more sophisticated models will allow scientists to extrapolate their predictions and apply them to multiple species with similar traits.

The researchers are calling for the launch of a global campaign to be spearheaded by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES. The IPBES operates under the auspices of four United Nations entities and is dedicated to providing scientific information to policymakers worldwide. One thousand scientists from all over the world currently contribute to the work of IPBES on a voluntary basis. The scientists are also encouraging conservation strategies to support biodiversity such as maintaining dispersal corridors, and preserving existing natural habitats and genetic diversity.

"Our biggest challenge is pinpointing which species to concentrate on and which regions we need to allocate resources," says UConn Associate Professor Urban. In an earlier study in Science, Urban predicted that as many as one in six species internationally could be wiped out by climate change. "We are at a triage stage at this point. We have limited resources and patients lined up at the door."
-end-
Working groups for this project were supported by the Synthesis Centre of the German Centre for Integrative Biodiversity Research, DIVERSITAS, and the National Science Foundation.

University of Connecticut

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...