Nav: Home

A more accurate sensor for lead paint

September 08, 2016

ANN ARBOR--A new molecular gel recipe developed at the University of Michigan is at the core of a prototype for a more accurate lead paint test.

The test makes it easy to see whether a paint chip contains more than the regulated 5,000 parts per million of the poisonous metal that was banned from pigments in 1978. Government agencies use that threshold to define paint as "lead-based" and the Environmental Protection Agency requires that home test kits can differentiate above and below it. Yet these home kits have a wide margin of error and they produce many false positives, the researchers say.

The new test is more clear and accurate than its counterparts. It consists of a vial that holds paint thinner and a sprinkling of certain salts that, when combined with the right concentration of lead, form a gel.

Users drop a paint chip in, heat the mixture and wait to see how the solution reacts. If a gel forms and the gel stays at the top of the inverted vial, it's positive for at least 5,000 ppm lead. If the solution stays liquid and no gel forms, there may still be some lead in the paint, but not enough to require special steps to maintain it or get rid of it.

"What's great is that it doesn't matter what color the paint is and it is so simple: anyone can tell the difference between a liquid and a gel," said Gesine Veits, a postdoctoral scholar in chemistry and first author of a paper on the work published in the Journal of the American Chemical Society.

The test could help homeowners and renters better understand their level of risk. The researchers say it also pushes forward some exciting science. It demonstrates a more streamlined approach to making targeted molecular gels, Jello-like substances that hold promise for sensing, biomedicine and environmental clean-up applications.

"Most molecular gels are discovered serendipitously," said Anne McNeil, professor of chemistry in the College of Literature, Science, and the Arts and of macromolecular science and engineering in the College of Engineering.

"Other times, researchers might take a gel that's already been discovered and use it for a different purpose. To make one from scratch is really hard. This paper is about a completely different approach."

To come up with their recipe, the researchers first assumed that exploring crystal growth could give them insights about gel formation. Crystals are rigid solids and gels are in between solids and liquids.

Next, they turned to the Cambridge Structural Database, a global repository of more than 800,000 crystal structures. Any researcher who reports a new crystal structure is required to enter it in the database.

They searched for crystals that contain lead. Then they narrowed that down further. From looking at gels under a microscope, they knew gels often resemble bowls of spaghetti--tangles of long fibers. Of the possible crystal structures, it occurred to them that a long strand would be most similar to a needle-shaped crystal. So the research team zeroed in on the crystal structures that contain lead--and produced a shaft shape. The researchers then used those molecules as the starting point.

"We were surprised how well it worked," McNeil said.

Not everyone is convinced that their findings weren't serendipitous themselves.

"We made the assumption that when a crystal grows and it forms a needle-shape, the forces might be similar to those at work when a gel is forming," McNeil said. "It seems to have worked, but some people think it was a big assumption."

McNeil's research group plans to test the new design process on a gel that doesn't include a metal, to see if their recipe can serve as a template for others.

The paper is titled, "Developing a gel-based sensor using crystal morphology prediction." The research took place over several years with many different people contributing: postdoctoral scholar Gesine Veits (funded through a University of Michigan Associate Professor Support Fund), former graduate student Kelsey Carter (funded by a National Science Foundation Predoctoral Fellowship and the Office of Naval Research) and visiting undergraduate student Sarah Cox (funded through a National Science Foundation REU Site in Chemical Sciences).

The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.
-end-


University of Michigan

Related Lead Articles:

Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.
What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.
UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.
Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.
Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.
Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.
For the brokenhearted, grief can lead to death
Grief can cause inflammation that can kill, according to new research from Rice University.
Lead or follow: What sets leaders apart?
Leaders are more willing to take responsibility for making decisions that affect the welfare of others.
Taking the lead toward witchweed control
A compound that binds to and inhibits a crucial receptor protein offers a new route for controlling a parasitic plant.
How looking at the big picture can lead to better decisions
New research suggests how distancing yourself from a decision may help you make the choice that produces the most benefit for you and others affected.
More Lead News and Lead Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.