Are we being watched? Tens of other worlds could spot the Earth

September 08, 2017

A group of scientists from Queen's University Belfast and the Max Planck Institute for Solar System Research in Germany have turned exoplanet-hunting on its head, in a study that instead looks at how an alien observer might be able to detect Earth using our own methods. They find that at least nine exoplanets are ideally placed to observe transits of Earth, in a new work published in the journal Monthly Notices of the Royal Astronomical Society.

Thanks to facilities and missions such as SuperWASP and Kepler, we have now discovered thousands of planets orbiting stars other than our Sun, worlds known as 'exoplanets'. The vast majority of these are found when the planets cross in front of their host stars in what are known as 'transits', which allow astronomers to see light from the host star dim slightly at regular intervals every time the planet passes between us and the distant star.

In the new study, the authors reverse this concept and ask, "How would an alien observer see the Solar System?" They identified parts of the distant sky from where various planets in our Solar System could be seen to pass in front of the Sun - so-called 'transit zones' -- concluding that the terrestrial planets (Mercury, Venus, Earth, and Mars) are actually much more likely to be spotted than the more distant 'Jovian' planets (Jupiter, Saturn, Uranus, and Neptune), despite their much larger size.

"Larger planets would naturally block out more light as they pass in front of their star", commented lead author Robert Wells, a PhD student at Queen's University Belfast. "However the more important factor is actually how close the planet is to its parent star - since the terrestrial planets are much closer to the Sun than the gas giants, they'll be more likely to be seen in transit."

To look for worlds where civilisations would have the best chance of spotting our Solar System, the astronomers looked for parts of the sky from which more than one planet could be seen crossing the face of the Sun. They found that three planets at most could be observed from anywhere outside of the Solar System, and that not all combinations of three planets are possible.

Katja Poppenhaeger, a co-author of the study, adds, "We estimate that a randomly positioned observer would have roughly a 1 in 40 chance of observing at least one planet. The probability of detecting at least two planets would be about ten times lower, and to detect three would be a further ten times smaller than this."

Of the thousands of known exoplanets, the team identified sixty-eight worlds where observers would see one or more of the planets in our Solar System transit the Sun. Nine of these planets are ideally placed to observe transits of Earth, although none of the worlds are deemed to be habitable.

In addition, the team estimate that there should be approximately ten (currently undiscovered) worlds which are favourably located to detect the Earth and are capable of sustaining life as we know it. To date however, no habitable planets have been discovered from which a civilisation could detect the Earth with our current level of technology.

The ongoing K2 mission of NASA's Kepler spacecraft is to continue to hunt for exoplanets in different regions of the sky for a few months at a time. These regions are centred close to the plane of Earth's orbit, which means that there are many target stars located in the transit zones of the Solar System planets. The team's plans for future work include targeting these transit zones to search for exoplanets, hopefully finding some which could be habitable.
-end-


Royal Astronomical Society

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.