UBC scientists find clues to queen bee failure

September 08, 2020

Scientists at UBC are unravelling the mysteries behind a persistent problem in commercial beekeeping that is one of the leading causes of colony mortality--queen bee failure.

This occurs when the queen fails to produce enough fertilized eggs to maintain the hive, and is regularly cited by the Canadian Association of Professional Apiarists as one of the top causes of colony mortality.

In recent research outlined in BMC Genomics, University of British Columbia and North Carolina State University researchers identified specific proteins that are activated in queen bees under different stressful conditions: extreme heat, extreme cold, and pesticide exposure--conditions that can affect the viability of the sperm stored in the honey bee queen's body. If the queen does not have enough live sperm to produce enough fertilized eggs to maintain its population of worker bees, the colony will eventually die out.

Scientists then measured the levels of these markers in a collection of queens in B.C. that had failed in the field, and found that they had higher levels of heat-shock and pesticide protein markers compared to healthy queens. The results pave the way for a future diagnostic test to help beekeepers understand, and prevent, queen bee failure in the future.

"Currently, there isn't any method to actually figure out why the queen has failed in a colony, and that's important because there are quite a few different ways that that could happen," said lead author Alison McAfee, a biochemist at the Michael Smith Labs at UBC and postdoctoral fellow at NC State. "This is a very understudied area."

Previous research conducted by McAfee and her colleagues determined that queens are safest when kept between 15 and 38 degrees Celsius, and identified five protein markers associated with heat-shock in queens. Now, McAfee has confirmed the two most identifiable biomarkers for heat-shock, along with two protein markers useful for detecting cold-shock, and two associated with sublethal levels of pesticides. The findings open the door to testing that will provide beekeepers with information needed to ensure the long-term viability of their hives.

"We want to develop a diagnostic test that we can do on a failed queen, which can provide the beekeeper with information on what happened to her in the past that made her fail now," explained McAfee. "If we can do that reliably, then then the beekeeper could do more to try to prevent that from happening in the future."

Currently, beekeepers simply toss away a failed queen. In the future, said McAfee, "they could ship her to a lab, which would measure the abundance of all these different markers and send a report with information on the likelihood of her being stressed by cause X, Y and Z."

When it came to failed queens from the field in B.C., the researchers were surprised to find elevated markers associated with heat stress and, to a lesser extent, pesticide exposure.

"We didn't have any reason to believe that these queens were heat shocked," said McAfee. "A substantial number of them had elevated levels of those particular markers, which could mean that there is a lot more temperature stress going on out there than we would expect. It could also be that those markers also become elevated due to other kinds of stresses that we haven't looked at yet."

The effect of extreme temperatures on queen bees is a large concern for Canadian beekeepers who import 250,000 queen bees every year, primarily from Australia, New Zealand, and the U.S. Hours spent in the cargo holds of airplanes and warehouses can subject the queens to large fluctuations in temperature during their journey--something McAfee has investigated in past work.

"Every time we put temperature loggers in queen shipments, we have at least some of the shipments coming back is being outside of that Goldilocks zone between 15 and 38 degrees, so I think that happens more frequently than we have been aware of," she said. "There are no rules for shipping queens, such as including temperature loggers in their shipments. Producers just ship them via whatever courier they choose, and beekeepers are at the mercy of the shipper for handling the package properly."
-end-


University of British Columbia

Related Pesticide Articles from Brightsurf:

Pesticide deadly to bees now easily detected in honey
A common insecticide that is a major hazard for honeybees is now effectively detected in honey thanks to a simple new method.

Pesticide mixtures a bigger problem than previously thought
New research led by The University of Queensland has provided the first comprehensive analysis of pesticide mixtures in creeks and rivers discharging to the Great Barrier Reef.

Pesticide seed coatings are widespread but underreported
Seed-coated pesticides -- such as neonicotinoids, many of which are highly toxic to both pest and beneficial insects -- are increasingly used in the major field crops, but are underreported, in part, because farmers often do not know what pesticides are on their seeds, according to an international team of researchers.

Pesticide companies leverage regulations for financial gains
Some pesticide companies may put profit ahead of protecting the public from potential harms.

Pesticide exposure may increase heart disease and stroke risk
Occupational exposure to high levels of pesticides may raise the risk of heart disease and stroke, even in generally healthy men.

Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.

Transfer of EU powers leads to silent erosion of UK pesticide regulation
New analysis by the UK Trade Policy Observatory is warning of a significant weakening of enforcement arrangements covering the approval of pesticides as part of legislative changes carried out under the EU Withdrawal Act.

Pesticide exposure causes bumblebee flight to fall short
Bees exposed to a neonicotinoid pesticide fly only a third of the distance that unexposed bees are able to achieve.

Tomato, tomat-oh! -- understanding evolution to reduce pesticide use
Although pesticides are a standard part of crop production, Michigan State University researchers believe pesticide use could be reduced by taking cues from wild plants.

Pesticide cocktail can harm honey bees
A series of tests conducted over several years by scientists at UC San Diego have shown for the first time that Sivanto, developed by Bayer CropScience AG and first registered for commercial use in 2014, could pose a range of threats to honey bees depending on seasonality, bee age and use in combination with common chemicals such as fungicides.

Read More: Pesticide News and Pesticide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.