Nav: Home

New insights into why people with down syndrome are at higher risk for leukemia

September 08, 2020

Scientists from Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago were the first to examine endothelial cells - one of the main sources of blood production - for clues as to why people with Down syndrome have higher prevalence of leukemia. They identified a new set of genes that are overexpressed in endothelial cells of patients with Down syndrome. This creates an environment conducive to leukemia, which is characterized by uncontrolled development and growth of blood cells. Their findings, published in the journal Oncotarget, point to new potential targets for treatment and possibly prevention of leukemia, in people with Down syndrome and in the general population.

"We found that Down syndrome, or Trisomy 21, has genome-wide implications that place these individuals at higher risk for leukemia," says co-lead author Mariana Perepitchka, BA, Research Associate at the Manne Research Institute at Lurie Children's. "We discovered an increased expression of leukemia-promoting genes and decreased expression of genes involved in reducing inflammation. These genes were not located on chromosome 21, which makes them potential therapeutic targets for leukemia even for people without Down syndrome."

Down syndrome is a congenital genetic disorder caused by additional genetic material from an extra copy of chromosome 21. The condition occurs in about one in 700 babies. In addition to developmental and physical impairments, people with Down syndrome have a 500-fold risk of developing acute megakaryoblastic leukemia (AMKL) and a 20-fold risk of being diagnosed with acute lymphoblastic leukemia (ALL).

"Our discovery of leukemia-conducive gene expression in endothelial cells could open new avenues for cancer research," says co-lead author Yekaterina Galat, BS, Research Associate at the Manne Research Institute at Lurie Children's.

The study used skin samples from patients with Down syndrome to create induced pluripotent stem cells (iPSC) that were then differentiated into endothelial cells. Impairment in endothelial cell genetic expression was found to produce altered endothelial function throughout the cell maturation.

"Fortunately, advances in iPSC technology have provided us with an opportunity to study cell types, such as endothelial cells, that are not easily attainable from patients," says senior author Vasil Galat, PhD, Director of Human iPS and Stem Cell Core at Manne Research Institute at Lurie Children's and Research Assistant Professor of Pathology at Northwestern University Feinberg School of Medicine. "If our results are confirmed, we may have new gene targets for developing novel leukemia treatments and prevention."
-end-
Research at Ann & Robert H. Lurie Children's Hospital of Chicago is conducted through the Stanley Manne Children's Research Institute. The Manne Research Institute is focused on improving child health, transforming pediatric medicine and ensuring healthier futures through the relentless pursuit of knowledge. Lurie Children's is ranked as one of the nation's top children's hospitals by U.S. News & World Report. It is the pediatric training ground for Northwestern University Feinberg School of Medicine. Last year, the hospital served more than 220,000 children from 48 states and 49 countries.

Ann & Robert H. Lurie Children's Hospital of Chicago

Related Leukemia Articles:

Nanoparticle for overcoming leukemia treatment resistance
One of the largest problems with cancer treatment is the development of resistance to anticancer therapies.
Key gene in leukemia discovered
Acute myeloid leukemia (AML) is one of the most common forms of blood cancer among adults and is associated with a low survival rate, and leads to the inhibition of normal blood formation.
Vitamin B6, leukemia's deadly addiction
Researchers from CSHL and Memorial Sloan Kettering Cancer Center have discovered how Acute Myeloid Leukemia is addicted to vitamin B6.
Artificial intelligence tracks down leukemia
Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia -- with high reliability.
Milestone reached in new leukemia drug
Using a chemical compound called YKL-05-099, a team of cancer researchers from CSHL and the Dana Farber Institute was able to target the Salt-Inducible Kinase 3 (SIK3) pathway and extend survival in mice with MLL leukemia.
The drug combination effective against bovine leukemia
Scientists have succeeded in reducing levels of the bovine leukemia virus (BLV) in cows with severe infections by combining an immune checkpoint inhibitor and an enzyme inhibitor.
Towards a safer treatment for leukemia
An international team of researchers at VIB-KU Leuven, Belgium, the UK Dementia Institute and the Children's Cancer Institute, Australia, have found a safer treatment for a specific type of leukemia.
Research paves way for new source for leukemia drug
Chemistry researchers have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.
An atlas of an aggressive leukemia
A team of researchers led by Bradley Bernstein at the Ludwig Center at Harvard has used single-cell technologies and machine learning to create a detailed 'atlas of cell states' for acute myeloid leukemia (AML) that could help improve treatment of the aggressive cancer.
Finding second hits to knock out leukemia
Targeted drugs are a cornerstone of personalized medicine, yet come with important drawbacks.
More Leukemia News and Leukemia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.