CNIO researchers develop an effective strategy against KRAS mutant lung tumors in mice

September 08, 2020

The KRAS oncogene is involved in at least one fifth of all human cancers: KRAS mutations are directly responsible for 32% of lung tumours and 96% of pancreatic tumours. However, after more than thirty years of research to date, there are still no effective therapeutic strategies against this oncogene. For this reason, much of the research conducted seeks to identify other molecules that display therapeutic activity along the KRAS signalling pathway. Rising to this challenge, researchers from the Experimental Oncology Group of the Spanish National Cancer Research Centre (CNIO) have achieved complete remission in 25% of lung tumours induced by this oncogene in mice following genetic inactivation of CDK4 and RAF1, which opens new venues for the development of future treatments. This finding has been published by PNAS, the journal of the American Academy of Sciences.

In this project, the CNIO team explored an approach that consists of inactivating two genes that are part of the KRAS signalling pathway: CDK4 and RAF1. "And this strategy has worked," says Monica Musteanu, one of the leading authors of the study. By working with mouse models for lung cancer caused by a combination of two mutations - activation of the KRAS oncogene and elimination of the tumour suppressor gene p53, two of the most frequently mutated genes in human cancer - they have managed to shrink 100% of the tumours, and a quarter of them have remitted completely. In addition, the researchers have confirmed in healthy mice that this therapeutic strategy does not compromise normal functioning of the body.

Even so, as is often found in clinical practice, a percentage of the tumours were able to survive in the absence of CDK4 and RAF1. However, the researchers were able to identify the molecular mechanisms that triggered this resistance and prevented total tumour remission: activation of the PI3K pathway, essential in cancer, and the silencing of several tumour suppressor genes by means of methylation. "Both mechanisms can be therapeutically neutralised: using PI3K inhibitors, on the one hand, and on the other, through the selective demethylation of tumour suppressor genes to reactivate their function", explains Laura de Esteban, the lead author of the research published by PNAS.

To carry out this study, the CNIO team used a mouse model that accurately reproduces the human disease, inducing aggressive lung tumours by activating the KRAS oncogene and deactivating the p53 tumour suppressor, a genetic combination responsible for a high percentage of human lung adenocarcinomas. Then, once the tumour has formed, genes are inactivated in the mouse systemically in the same way that a patient would receive treatment after diagnosis.

The findings shed light on the development of new treatments for tumours with KRAS mutations and indicate the importance of developing inhibitors specifically against RAF1, because the inhibitors developed so far have not made it past phase I on account of their high toxicity.

In addition, the authors also point out that another area of research to be pursued in the future would be the study of multiple resistance pathways that may arise following inactivation of therapeutic targets.
The CNIO Experimental Oncology Group is a global reference in the study of KRAS-related cancers, with notable examples such as the elimination of lung tumours and advanced pancreatic tumours by inactivating the RAF1 kinase in animal models.

The research was funded by the Spanish Ministry of Science and Innovation, the Institute of Health Carlos III, the European Research Council (ERC), the Autonomous Community of Madrid, the National Natural Science Foundation of China, the AXA Foundation, and the Ministry of Education.

Reference article:Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Laura Esteban-Burgos et al (PNAS, 2020). DOI: 10.1073/pnas.2002520117

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to