Physicists create artificial molecule on a chip

September 09, 2004

Using integrated circuit fabrication techniques, a team of researchers from Yale University has bound a single photon to a superconducting device engineered to behave like a single atom, forming an artificial molecule. It's the first experimental result in a field Yale professors Robert Schoelkopf and Steven Girvin have dubbed Circuit Quantum Electrodynamics.

The superconducting devices can be operated as qubits, the basic element of information storage in the field of quantum computing. In the September 9th issue of the journal Nature, Andreas Wallraff and his colleagues present telltale evidence that their qubit was coupling to a microwave photon, sharing energy in much the same way electrons are shared when two atoms combine to form a molecule. They offered two suggestions for naming the new, combined state: phobit or quton.

Qutons have been made before, the first about 12 years ago. But by using artificial atoms for their qubits instead of real ones, and microwave transmission lines instead of optical cavities, the Yale physicists were able to shrink a roomful of experimental apparatus onto a chip less than 1 square centimeter (or less than ¼ square inch) in size. They have also improved the coupling between resonator and "atom" by a factor of about 1000, which will help them explore fundamental interactions of light and matter. Soon they will try to control several qubits on one chip, using photons to connect them together in a prototype architecture for quantum computing and quantum cryptography.
-end-
For more information see:
Yale University Press Release: http://www.eurekalert.org/emb_releases/2004-09/yu-ysb090604.php
Yale Circuit QED website: http://www.eng.yale.edu/rslab/cQEDPrincipal Investigators: Steven Girvin
Yale University
203-432-5082
steven.girvin@yale.edu

Robert Schoelkopf
Yale University
203-432-4289
rob.schoelkopf@yale.edu

Program contact: Hollis Wickman, NSF
703-292-4929
hwickman@nsf.gov



The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, Custom News Service. To subscribe, enter the NSF Home Page at: http://www.nsf.gov/home/cns/#new and fill in the information under "new users."

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

National Science Foundation

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.