Left and right ears not created equal as newborns process sound, finds UCLA/UA research

September 09, 2004

Challenging decades of scientific belief that the decoding of sound originates from a preferred side of the brain, UCLA and University of Arizona scientists have demonstrated that right-left differences for the auditory processing of sound start at the ear.

Reported in the Sept. 10 edition of Science, the new research could hold profound implications for rehabilitation of persons with hearing loss in one or both ears, and help doctors enhance speech and language development in hearing-impaired newborns.

"From birth, the ear is structured to distinguish between various types of sounds and to send them to the optimal side in the brain for processing," explained Yvonne Sininger, Ph.D., visiting professor of head and neck surgery at the David Geffen School of Medicine at UCLA. "Yet no one has looked closely at the role played by the ear in processing auditory signals."

Scientists have long understood that the auditory regions of the two halves of the brain sort out sound differently. The left side dominates in deciphering speech and other rapidly changing signals, while the right side leads in processing tones and music. Because of how the brain's neural network is organized, the left half of the brain controls the right side of the body, and the left ear is more directly connected to the right side of the brain.

Prior research had assumed that a mechanism arising from cellular properties unique to each brain hemisphere explained why the two sides of the brain process sound differently. But Sininger's findings suggest that the difference is inherent in the ear itself.

"We always assumed that our left and right ears worked exactly the same way," she said. "As a result, we tended to think it didn't matter which ear was impaired in a person. Now we see that it may have profound implications for the individual's speech and language development."

Working with co-author Barbara Cone-Wesson, Ph.D., associate professor of speech and hearing sciences at the University of Arizona, Sininger studied tiny amplifiers in the outer hair cells of the inner ear.

"When we hear a sound, tiny cells in our ear expand and contract to amplify the vibrations," explained Sininger. "The inner hair cells convert the vibrations to neural cells and send them to the brain, which decodes the input."

"These amplified vibrations also leak back out to the ear in a phenomena call otoacoustic emission (OAE)," added Sininger. "We measured the OAE by inserting a microphone in the ear canal."

In a six-year study, the UCLA/UA team evaluated more than 3,000 newborns for hearing ability before they left the hospital. Sininger and Cone-Wesson placed a tiny probe device in the baby's ear to test its hearing. The probe emitted a sound and measured the ear's OAE.

The researchers measured the babies OAE with two types of sound. First, they used rapid clicks and then sustained tones. They were surprised to find that the left ear provides extra amplification for tones like music, while the right ear provides extra amplification for rapid sounds timed like speech.

"We were intrigued to discover that the clicks triggered more amplification in the baby's right ear, while the tones induced more amplification in the baby's left ear," said Sininger. "This parallels how the brain processes speech and music, except the sides are reversed due to the brain's cross connections."

"Our findings demonstrate that auditory processing starts in the ear before it is ever seen in the brain," said Cone-Wesson. "Even at birth, the ear is structured to distinguish between different types of sound and to send it to the right place in the brain."

Previous research supports the team's new findings. For example, earlier research shows that children with impairment in the right ear encounter more trouble learning in school than children with hearing loss in the left ear.

"If a person is completely deaf, our findings may offer guidelines to surgeons for placing a cochlear implant in the individual's left or right ear and influence how cochlear implants or hearing aids are programmed to process sound," explained Cone-Wesson. "Sound-processing programs for hearing devices could be individualized for each ear to provide the best conditions for hearing speech or music."

"Our next step is to explore parallel processing in brain and ear simultaneously," said Sininger. "Do the ear and brain work together or independently in dealing with stimuli? How does one-sided hearing loss affect this process? And finally, how does hearing loss compare to one-sided loss in the right or left ear?"
-end-
The National Institute on Deafness and Other Communicative Disorders funded the study.

University of California - Los Angeles

Related Hearing Loss Articles from Brightsurf:

Proof-of-concept for a new ultra-low-cost hearing aid for age-related hearing loss
A new ultra-affordable and accessible hearing aid made from open-source electronics could soon be available worldwide, according to a study published September 23, 2020 in the open-access journal PLOS ONE by Soham Sinha from the Georgia Institute of Technology, Georgia, US, and colleagues.

Ultra-low-cost hearing aid could address age-related hearing loss worldwide
Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.

Understanding the link between hearing loss and dementia
Scientists have developed a new theory as to how hearing loss may cause dementia and believe that tackling this sensory impairment early may help to prevent the disease.

Study uncovers hair cell loss as underlying cause of age-related hearing loss
In a study of human ear tissues, scientists have demonstrated that age-related hearing loss is mainly caused by damage to hair cells.

Hair cell loss causes age-related hearing loss
Age-related hearing loss has more to do with the death of hair cells than the cellular battery powering them wearing out, according to new research in JNeurosci.

How hearing loss in old age affects the brain
If your hearing deteriorates in old age, the risk of dementia and cognitive decline increases.

Examining associations between hearing loss, balance
About 3,800 adults 40 and older in South Korea participating in a national health survey were included in this analysis that examined associations between hearing loss and a test of their ability to retain balance.

Veterinarians: Dogs, too, can experience hearing loss
Just like humans, dogs are sometimes born with impaired hearing or experience hearing loss as a result of disease, inflammation, aging or exposure to noise.

Victorian child hearing-loss databank to go global
A unique databank that profiles children with hearing loss will help researchers globally understand why some children adapt and thrive, while others struggle.

Hearing loss, dementia risk in population of Taiwan
A population-based study using data from the National Health Insurance Research Database of Taiwan suggests hearing loss is associated with risk of dementia.

Read More: Hearing Loss News and Hearing Loss Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.