Nav: Home

Uncovering a new aspect of charge density modulations in high temperature superconductors

September 09, 2019

Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors. They have identified a new electron wave which could help reveal some of the mysteries about superconducting materials. The findings are published in the journal Science.

High critical temperature superconductors have a variable charge density, meaning that their electrical charge is unevenly distributed. This partly results from what are known as 'charge density waves', which were discovered a few years ago. But these have only been observed to exist sporadically, under certain conditions. Therefore, they were not believed to be a contributing factor to the materials' superconducting properties.

What the researchers have now discovered, however, is an additional aspect to the variable charge density, which they term "charge density fluctuations". These have been identified as an additional charge modulation, collective and with a shorter correlation length. They are very pervasive, meaning that compared to the conventional charge density waves, they are present at a much greater range of temperatures, up to room temperature and beyond, and at different levels of oxygen doping.

"These charge density fluctuations could be a crucial ingredient of the highly unconventional room temperature properties of high critical temperature superconductors - something which challenges our common understanding of the charge transport in metals," says Riccardo Arpaia, postdoctoral researcher at the Department of Microtechnology and Nanoscience at Chalmers, who carried out the research.

"One could say the charge density waves, which were already very well known, were just the tip of the iceberg. The charge density fluctuations which we have now identified are like the hidden bulk of the iceberg." says Riccardo Arpaia. "The discoveries were possible thanks to the major developments of synchrotron-based x-ray scattering techniques, and to the quality of the samples we have used."

The samples were fabricated at the Italian National Research Council in Napoli, and in the research group at Chalmers led by Professor Floriana Lombardi.

A further finding of the paper looks at how the charge density fluctuations evolve with the temperature of the material. While the previously-known charge density waves change abruptly as soon as the critical temperature is reached - meaning, dependent on whether the material is in a superconductive state or not, the newly-discovered charge density fluctuations are unaffected by the superconductivity. This indicates that the two characteristics are not 'in competition' with one another. This finding might strengthen the researchers' theory that the charge density fluctuations are the key to explaining the mystery of these materials.

Because superconductors operate at such low temperatures, they require cooling from liquid helium or liquid nitrogen, making them expensive and difficult to use outside of certain commercial applications. But if a superconductor could be made to work closer to room temperature, it could have enormous potential. Therefore, there is a lot of interest in improving our understanding of how this class of superconductors works.

Giacomo Ghiringhelli, Professor of Physics at Politecnico di Milano says about the research: "Since 2012, when charge density waves in cuprates were first observed, their importance had not been disputed - but their role had remained unclear. The newly observed charge density fluctuations appear to be a very general property of these materials, meaning they are likely playing a crucial role in the transport of electric current in cuprates."

Read the article "Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor" in the journal Science.

More information about superconductors

Superconductors are materials which, when exposed to a certain temperature, known as the 'critical temperature', suddenly acquire incredible new properties - chiefly, that they can conduct electrical charge with zero resistance.

Most superconductors currently in commercial use are known as low critical temperature - typically meaning below about -240 degrees Celsius. High critical temperature superconductors meanwhile, are those which exhibit superconducting properties at a somewhat higher temperature - though still hundreds of degrees below zero. The most common type are known as 'cuprates', made from a mixture of copper and oxygen - it was this particular class of superconductors which the researchers investigated.

European collaboration for the research

Riccardo Arpaia, co-lead author of the paper, is a researcher from Chalmers University of Technology who, through the framework of the Swedish Research Council's international postdoc programme, also researches at Politecnico di Milano, in the group of Giacomo Ghiringhelli, who conceived the experiment.

Chalmers and Politecnico di Milano are both members of the IDEA league, an alliance of five leading European technological universities, that aims to encourage and elevate European research in science and technology by sharing academic resources and knowledge.

Experiments were performed at the European Synchrotron Radiation Facility in Grenoble, in collaboration with researchers of the Italian National Research Council (CNR) and of the Sapienza University of Rome.

Resonant inelastic X-ray scattering

The researchers identified the charge density fluctuations through the use of a technique known as resonant inelastic X-ray scattering. RIXS is a spectroscopy technique, where photons (X-ray radiation) get scattered from a material due to interaction with electronic clouds.

RIXS is, as suggested by the name, a resonant technique, since the energy of the incident photons coincides, and hence resonates, with a specific electronic transition (the Cu L3 edge at ?931 eV, in the case illustrated in the paper). This strongly enhances the signal. For this reason, RIXS currently represents the best technique for the detection of weak charge density modulations with particularly short correlation lengths, going even beyond previous limits set by neutron scattering and scanning tunnel microscopy techniques.
The exceptional results presented in this work were made possible by the innovative "ERIXS" instrument realised jointly by the ESRF and the Politecnico di Milano.

For more information, contact:

Riccardo Arpaia
Postdoctoral researcher
Department of Microtechnology and Nanoscience
Chalmers University of Technology
+46 31 772 18 69

Chalmers University of Technology

Related Superconductors Articles:

Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.
Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.
Study probes relationship between strange metals and high-temperature superconductors
SLAC theorists have observed strange metallicity in a well-known model for simulating the behavior of materials with strongly correlated electrons, which join forces to produce unexpected phenomena rather than acting independently.
Uncovering a new aspect of charge density modulations in high temperature superconductors
Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors.
Charge fluctuations, a new property in superconductors
An experiment conducted jointly at the ESRF European Synchrotron Radiation Facility by the Politecnico di Milano, National Research Council, the Università La Sapienza di Roma and the Chalmers University of Technology in Gothenburg has revealed a new property of cuprates, so-called high critical temperature superconductors.
Physicists make graphene discovery that could help develop superconductors
When two mesh screens are overlaid, beautiful patterns appear when one screen is offset.
Experiments explore the mysteries of 'magic' angle superconductors
A team led by Princeton physicist Ali Yazdani conducted experiments to explore superconductivity in a groundbreaking new material known as magic-angle twisted graphene.
AI and high-performance computing extend evolution to superconductors
In a new study from the US Department of Energy's Argonne National Laboratory, researchers used the power of artificial intelligence and high-performance supercomputers to introduce and assess the impact of different configurations of defects on the performance of a superconductor.
Superconductors: Resistance is futile
New experimental results change the way we think about high-temperature superconductors.
Abrikosov vortices help scientists explain inconsistencies in 'dirty' superconductors theory
International team of physicists explained anomalous low temperature behavior of 'dirty' superconductors.
More Superconductors News and Superconductors Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at