Nav: Home

Uncovering a new aspect of charge density modulations in high temperature superconductors

September 09, 2019

Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors. They have identified a new electron wave which could help reveal some of the mysteries about superconducting materials. The findings are published in the journal Science.

High critical temperature superconductors have a variable charge density, meaning that their electrical charge is unevenly distributed. This partly results from what are known as 'charge density waves', which were discovered a few years ago. But these have only been observed to exist sporadically, under certain conditions. Therefore, they were not believed to be a contributing factor to the materials' superconducting properties.

What the researchers have now discovered, however, is an additional aspect to the variable charge density, which they term "charge density fluctuations". These have been identified as an additional charge modulation, collective and with a shorter correlation length. They are very pervasive, meaning that compared to the conventional charge density waves, they are present at a much greater range of temperatures, up to room temperature and beyond, and at different levels of oxygen doping.

"These charge density fluctuations could be a crucial ingredient of the highly unconventional room temperature properties of high critical temperature superconductors - something which challenges our common understanding of the charge transport in metals," says Riccardo Arpaia, postdoctoral researcher at the Department of Microtechnology and Nanoscience at Chalmers, who carried out the research.

"One could say the charge density waves, which were already very well known, were just the tip of the iceberg. The charge density fluctuations which we have now identified are like the hidden bulk of the iceberg." says Riccardo Arpaia. "The discoveries were possible thanks to the major developments of synchrotron-based x-ray scattering techniques, and to the quality of the samples we have used."

The samples were fabricated at the Italian National Research Council in Napoli, and in the research group at Chalmers led by Professor Floriana Lombardi.

A further finding of the paper looks at how the charge density fluctuations evolve with the temperature of the material. While the previously-known charge density waves change abruptly as soon as the critical temperature is reached - meaning, dependent on whether the material is in a superconductive state or not, the newly-discovered charge density fluctuations are unaffected by the superconductivity. This indicates that the two characteristics are not 'in competition' with one another. This finding might strengthen the researchers' theory that the charge density fluctuations are the key to explaining the mystery of these materials.

Because superconductors operate at such low temperatures, they require cooling from liquid helium or liquid nitrogen, making them expensive and difficult to use outside of certain commercial applications. But if a superconductor could be made to work closer to room temperature, it could have enormous potential. Therefore, there is a lot of interest in improving our understanding of how this class of superconductors works.

Giacomo Ghiringhelli, Professor of Physics at Politecnico di Milano says about the research: "Since 2012, when charge density waves in cuprates were first observed, their importance had not been disputed - but their role had remained unclear. The newly observed charge density fluctuations appear to be a very general property of these materials, meaning they are likely playing a crucial role in the transport of electric current in cuprates."

Read the article "Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor" in the journal Science.

More information about superconductors

Superconductors are materials which, when exposed to a certain temperature, known as the 'critical temperature', suddenly acquire incredible new properties - chiefly, that they can conduct electrical charge with zero resistance.

Most superconductors currently in commercial use are known as low critical temperature - typically meaning below about -240 degrees Celsius. High critical temperature superconductors meanwhile, are those which exhibit superconducting properties at a somewhat higher temperature - though still hundreds of degrees below zero. The most common type are known as 'cuprates', made from a mixture of copper and oxygen - it was this particular class of superconductors which the researchers investigated.

European collaboration for the research

Riccardo Arpaia, co-lead author of the paper, is a researcher from Chalmers University of Technology who, through the framework of the Swedish Research Council's international postdoc programme, also researches at Politecnico di Milano, in the group of Giacomo Ghiringhelli, who conceived the experiment.

Chalmers and Politecnico di Milano are both members of the IDEA league, an alliance of five leading European technological universities, that aims to encourage and elevate European research in science and technology by sharing academic resources and knowledge.

Experiments were performed at the European Synchrotron Radiation Facility in Grenoble, in collaboration with researchers of the Italian National Research Council (CNR) and of the Sapienza University of Rome.

Resonant inelastic X-ray scattering

The researchers identified the charge density fluctuations through the use of a technique known as resonant inelastic X-ray scattering. RIXS is a spectroscopy technique, where photons (X-ray radiation) get scattered from a material due to interaction with electronic clouds.

RIXS is, as suggested by the name, a resonant technique, since the energy of the incident photons coincides, and hence resonates, with a specific electronic transition (the Cu L3 edge at ?931 eV, in the case illustrated in the paper). This strongly enhances the signal. For this reason, RIXS currently represents the best technique for the detection of weak charge density modulations with particularly short correlation lengths, going even beyond previous limits set by neutron scattering and scanning tunnel microscopy techniques.
The exceptional results presented in this work were made possible by the innovative "ERIXS" instrument realised jointly by the ESRF and the Politecnico di Milano.

For more information, contact:

Riccardo Arpaia
Postdoctoral researcher
Department of Microtechnology and Nanoscience
Chalmers University of Technology
+46 31 772 18 69

Chalmers University of Technology

Related Superconductors Articles:

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.
Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.
Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.
A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.
Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.
Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.
Study probes relationship between strange metals and high-temperature superconductors
SLAC theorists have observed strange metallicity in a well-known model for simulating the behavior of materials with strongly correlated electrons, which join forces to produce unexpected phenomena rather than acting independently.
Uncovering a new aspect of charge density modulations in high temperature superconductors
Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors.
Charge fluctuations, a new property in superconductors
An experiment conducted jointly at the ESRF European Synchrotron Radiation Facility by the Politecnico di Milano, National Research Council, the Università La Sapienza di Roma and the Chalmers University of Technology in Gothenburg has revealed a new property of cuprates, so-called high critical temperature superconductors.
Physicists make graphene discovery that could help develop superconductors
When two mesh screens are overlaid, beautiful patterns appear when one screen is offset.
More Superconductors News and Superconductors Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.