Metal-organic framework nanoribbons

September 09, 2019

Metal-organic frameworks (MOFs) have attracted great attentions in the past decades due to their many noticeable features, such as large surface areas, highly ordered pores, tunable structures and unique functions, making them promising for many promising applications. The structure engineering of MOFs at the nanometer scale is essential to customize MOFs for specific applications.

Among various nanostructures, ultrathin nanoribbons (NRBs) show great potentials in both fundamental studies and technological applications. Their unique features like high surface-to-volume ratio, highly active surface, and high concentration of selectively exposed crystal facet enable them to exhibit unique electronic structures, mechanical properties, and excellent catalytic efficiency. However, so far, the preparation of ultrathin MOF NRBs still remains a great challenge due to the complicated nucleation and growth processes of MOFs.

In a new research article published in the National Science Review, the scientists at Nanyang Technological University, City University of Hong Kong and Beijing University of Chemical Technology present a general method to prepare ultrathin MOF NRBs by using the metal hydroxide nanostructures as precursors. They found that metal hydroxide nanostructures used as precursors can regulate the growth of MOF crystals by controlled releasing metal ions from the metal hydroxides, which plays a key role in the synthesis of MOF NRBs. Importantly, the proposed method is simple, efficient and versatile, which could be used for the preparation of a series of ultrathin MOF NRBs. As a proof-of-concept application, the as-prepared ultrathin NRBs were used in DNA detection, exhibiting excellent sensitivity and selectivity.
-end-
See the article:

Bingqing Wang, Meiting Zhao, Liuxiao Li, Ying Huang, Xiao Zhang, Chong Guo, Zhicheng Zhang, Hongfei Cheng, Wenxian Liu, Jing Shang, Jing Jin, Xiaoming Sun, Junfeng Liu, and Hua Zhang

Ultrathin Metal-Organic Framework Nanoribbons

Natl Sci Rev (August 2019) doi: 10.1093/nsr/nwz118

https://doi.org/10.1093/nsr/nwz118

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Nanostructures Articles from Brightsurf:

Unlocking PNA's superpowers for self-assembling nanostructures
Researchers at Carnegie Mellon University have developed a method for self-assembling nanostructures with gamma-modified peptide nucleic acid, a synthetic mimic of DNA.

Machine learning enhances light-matter interactions in dielectric nanostructures
The discovery has promising possibilities for the development of a wide range of photonic devices and applications including those involved in optical sensing, optoacoustic vibrations, and narrowband filtering.

Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.

Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.

Nanostructures help to reduce the adhesion of bacteria
Scientists has shown how bacteria adhere to rough surfaces at the microscopic level.

Diamonds are forever: New foundation for nanostructures
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have fabricated a novel glass and synthetic diamond foundation that can be used to create miniscule micro -- and nanostructures.

How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.

Heterophase nanostructures contributing to efficient catalysis
In the research on phase engineering of noble metal nanomaterials, amorphous/crystalline heterophase nanostructures have exhibited some intriguing properties.

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.

Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.

Read More: Nanostructures News and Nanostructures Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.