Nav: Home

Preventing the onset of schizophrenia in mouse model

September 09, 2019

Although predisposing processes occur earlier, schizophrenia breaks out at young adulthood, suggesting it might involve a pathological transition during late brain development in predisposed individuals. Using a genetic mouse model of schizophrenia, researchers from the Caroni group at the Friedrich Miescher Institute for Biomedical Research (FMI) showed that, like in patients, characteristic network and cognitive deficits only emerge in adult mice. They then demonstrated that these deficits could all be permanently prevented by specific treatments during a late adolescence sensitive time window. Their study has been published yesterday in Cell.

Schizophrenia - affecting about 1% of the worldwide population - is a mental disorder characterized by disorganized thoughts, false beliefs, difficulty in social relationships, cognitive deficits, abnormal motor behavior, as well as blunted emotions and motivation. A notable feature of this severe, chronic condition is that its symptoms first emerge at the transition between late adolescence and young adulthood. Schizophrenia treatments focus on the symptoms and often consist of antipsychotic medications.

The causes of schizophrenia are complex. They include comparable contributions by environmental factors - such as problems during birth, psychosocial factors, stress, and the consumption of cannabis during adolescence - and genetic factors, which in most cases involve mutations in large numbers of genes, each making a small contribution to the condition.

In order to do research on the root causes of a condition with a complex genetic component, researchers need to focus, if possible, on simpler 'genetic models' - people or animals with well-defined mutations exhibiting a strongly elevated risk of developing the disease. In schizophrenia, such models include people with the 22Q11DS syndrome, caused by deletions within a segment of chromosome 22, who have a 20 to 30-fold increased risk of developing schizophrenia. This led researchers to develop mice carrying a corresponding deletion in order to use them as a model of schizophrenia for lab research. (These mice are called "LgDel mice" but for simplicity reasons we will call them "schizophrenia-mice" here.)

Using the schizophrenia mouse model, researchers from the Caroni group set out to investigate the deficits exhibited by the schizophrenia-mice, and how these could be treated and perhaps prevented. The researchers showed that what was already known in human patients was also true in the schizophrenia-mice: network and cognitive dysfunctions emerged after late adolescence. Like patients, adult mice showed profound dysfunctions in a particular type of neurons called PV neurons, which are important orchestrators of neural networks. The dysfunctions led to network synchronization deficits, a hallmark of schizophrenia. Notably, antipsychotic drugs temporarily suppressed network and cognitive deficits in adult schizophrenia-mice.

Although PV neuron dysfunctions only spread through the brain in the adult, they were already present in the hippocampus of adolescent schizophrenia mice. Since late adolescence represents a time window when coordinated activity depending on hippocampal and cortical PV neurons is important for late brain maturation, the Caroni group hypothesized that adolescent hippocampal dysfunctions might interfere with proper brain maturation in schizophrenia-mice. The researchers investigated whether they could prevent the onset of schizophrenia by suppressing the network dysfunctions during the most critical time window, long enough to allow for transition to normal adult brain function, in spite of a strongly predisposing genetic background.

They succeeded! They showed that repeated treatments targeting the hippocampal PV network with common antipsychotic drugs or with more specific genetic activators of PV neurons, during 6-10 days, at the transition between late adolescence and adulthood, produced a complete and long-lasting rescue of network dysfunctions, as well as cognitive deficits in adult schizophrenia-mice.

"Our findings in a genetic mouse model support the hypothesis that a critical developmental time window influences the emergence of schizophrenia at the transition between late adolescence and adulthood - and that it is possible to prevent the progression of schizophrenia by treatment during that time window," says Pico Caroni. "It might be possible to build on our study to develop therapeutic strategies to prevent the outbreak of schizophrenia in at risk individuals."
-end-


Friedrich Miescher Institute

Related Schizophrenia Articles:

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.
Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.
New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.
Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
Genetics researchers close in on schizophrenia
Researchers at the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University have discovered 50 new gene regions that increase the risk of developing schizophrenia.
More Schizophrenia News and Schizophrenia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.