Molecule properties change through light

September 09, 2019

In the field of computer engineering, magnetically switchable materials play a significant role in data storage. A team from the Cluster of Excellence Ruhr Explores Solvation at Ruhr-Universität Bochum (RUB) has developed and manufactured a novel molecule called 3-methoxy-9-fluorenylidene. What's special about it: its magnetic properties can be controlled through light of different colours. This might be of use for computer industry.

The researchers working with Professor Wolfram Sander at the Chair of Organic Chemistry II outline their findings in the journal "Angewandte Chemie" on 14 August 2019.

Broad application range of magnetic materials

Magnetism is indispensable in computer engineering. Magnetism controls, for example, the information flow from the computer to magnetic storage media such as hard disks. Moreover, magnetic storage devices use read/write heads in the form of magnets that identify (i.e. read), or alter (i.e. write) the magnetisation patterns on the hard disk.

Methoxy group controls magnetic properties

Developed by Wolfram Sander and his team, the organic molecule 3-methoxy-9-fluorenylidene is based on a fluorine scaffold with a methoxy group attached in the shape of a rotational tail.

The researchers have figured out that the molecule's magnetic properties are determined by the orientation of the methoxy group, which changes its conformation depending on the kind of light that hits it.

Blue light switches the methoxy group into the "up" conformation forming the diamagnetic and less reactive singlet state. Whereas green light rotates the methoxy group down at the molecule, which results in the paramagnetic triplet state that has a higher reactivity against molecular hydrogen.

Interesting for research and industry

Because of its properties, 3-methoxy-9-fluorenylidene is of great interest to research. "Using this group of atoms, we can study the spin dependence of reactions. It could also play a role in the development of novel switchable magnetic materials and chemical sensors," predicts Sander.

Compared with traditional ferromagnetic materials, 3-methoxy-9-fluorenylidene offers considerable advantages: magnetism can be switched on and off through visible light. Moreover, organic magnets are not brittle like conventional magnets, but flexible and can be processed like plastics.

The snag

However, the molecule does have one drawback: it is stable only at extremely low temperatures. "This is why we are researching into magnetically switchable materials that can be used under ambient conditions," says Wolfram Sander.
Original publication

Iris Trosien, Enrique Mendez-Vega, Tobias Thomanek, Wolfram Sander: Conformational spin switching and spin?selective hydrogenation of a magnetically bistable carbene, in: Angewandte Chemie, 2019, DOI: 10.1002/anie.201906579


The German Research Foundation supported the work as part of the Cluster of Excellence Resolv (EXC 2033, project number 390677874).

Press contact

Prof. Dr. Wolfram Sander
Chair of Organic Chemistry II
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Phone: +49 234 32 24593

Ruhr-University Bochum

Related Magnets Articles from Brightsurf:

Electrified magnets: researchers uncover a new way to handle data
The properties of synthesised magnets can be changed and controlled by charge currents as suggested by a study and simulations conducted by physicists at Martin Luther University Halle-Wittenberg (MLU) and Central South University in China.

Scientists design magnets with outstanding properties
An international team of researchers led by the Centre de Recherche Paul Pascal (UMR 5031, CNRS -University of Bordeaux) has discovered a novel way to design magnets with outstanding physical properties, which could make them complementary to, or even competitive with traditional inorganic magnets, which are widely used in everyday appliances.

Towards next-generation molecule-based magnets
Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors.

Finding the right colour to control magnets with laser pulses
Scientists have discovered a new way to manipulate magnets with laser light pulses shorter than a trillionth of a second.

Researchers control elusive spin fluctuations in 2D magnets
A Cornell team developed a new imaging technique that is fast and sensitive enough to observe these elusive critical fluctuations in two-dimensional magnets.

Anisotropy of spin-lattice relaxations in molecular magnets
Scientists from IFJ PAN in cooperation with researchers from the Nara Women's University (Japan) and the Jagiellonian University (Poland) took another important step towards building a functional quantum computer.

Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy
Permanent magnets can, in principle, greatly simplify the design and production of the complex coils of stellarator fusion facilities.

Super magnets from a 3D printer
Magnetic materials are an important component of mechatronic devices such as wind power stations, electric motors, sensors and magnetic switch systems.

Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.

Obtaining and observing single-molecule magnets on the silica surface
Following the latest research in the field of obtaining single-molecule magnets (SMMs), scientists have taken another step on the way toward obtaining super-dense magnetic memories and molecular neural networks, in particular the construction of auto-associative memories and multi-criterion optimization systems operating as the model of the human brain.

Read More: Magnets News and Magnets Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to