Nav: Home

Making and controlling crystals of light

September 09, 2019

Optical microresonators convert laser light into ultrashort pulses travelling around the resonator's circumference. These pulses, called "dissipative Kerr solitons", can propagate in the microresonator maintaining their shape.

When solitons exit the microresonator, the output light takes the form of a pulse train - a series of repeating pulses with fixed intervals. In this case, the repetition rate of the pulses is determined by the microresonator size. Smaller sizes enable pulse trains with high repetition rates, reaching hundreds of gigahertz in frequency. These can be used to boost the performance of optical communication links or become a core technology for ultrafast LiDAR with sub-micron precision.

Exciting though it is, this technology suffers from what scientists call "light-bending losses" - loss of light caused by structural bends in its path. A well-known problem in fiber optics, light-bending loss also means that the size of microresonators cannot drop below a few tens of microns. This therefore limits the maximum repetition rates we can achieve for pulses.

Publishing in Nature Physics, researchers from the lab of Tobias J. Kippenberg at EPFL have now found a way to bypass this limitation and uncouple the pulse repetition rate from the microresonator size by generating multiple solitons in a single microresonator.

The scientists discovered a way of seeding the microresonator with the maximum possible number of dissipative Kerr solitons with precisely equal spacing between them. This new formation of light can be thought of as an optical analogue to atomic chains in crystalline solids, and so the researchers called them "perfect soliton crystals" (PSCs).

Due to interferometric enhancement and the high number of optical pulses, PSCs coherently multiply the performance of the resulting pulse train - not just its repetition rate, but also its power.

The researchers also investigated the dynamics of PSC formations. Despite their highly organized structure, they seem to be closely linked to optical chaos, a phenomenon caused by light instabilities in optical microresonators, which is also common for semiconductor-based and fiber laser systems.

"Our findings allow the generation of optical pulse trains with ultra-high repetition rates with several terahertz, using regular microresonators," says researcher Maxim Karpov. "These can be used for multiple applications in spectroscopy, distance measurements, and as a source of low-noise terahertz radiation with a chip-size footprint."

Meanwhile, the new understanding of soliton dynamics in optical microresonators and the behavior of PSCs opens up new avenues into the fundamental physics of soliton ensembles in nonlinear systems.

Maxim Karpov, Martin H. P. Pfeiffer, Hairun Guo, Wenle Weng, Junqiu Liu, Tobias J. Kippenberg. Dynamics of soliton crystals in optical microresonators. Nature Physics 09 September 2019. DOI: 10.1038/s41567-019-0635-0

Ecole Polytechnique Fédérale de Lausanne

Related Terahertz Articles:

Terahertz imaging technique reveals subsurface insect damage in wood
Insect infestation is becoming an increasingly costly problem to the forestry industry, especially in areas experiencing increased droughts and hot spells related to climate change.
Closing the terahertz gap: Tiny laser is an important step toward new sensors
In a major step toward developing portable scanners that can rapidly measure molecules in pharmaceuticals or classify tissue in patients' skin, researchers have created an imaging system that uses lasers small and efficient enough to fit on a microchip.
Terahertz technology escapes the cold
The group of Jérôme Faist in the Department of Physics at ETH Zurich achieved the first realization of a terahertz quantum cascade laser operating without cryogenic cooling.
On-demand control of terahertz and infrared waves
A theory from 2006 predicts that it should be possible to use graphene in a magnetic field not only to absorb terahertz and infrared light on demand but also to control the direction of the circular polarisation.
Laser trick produces high-energy terahertz pulses
A team of scientists from DESY and the University of Hamburg has achieved an important milestone in the quest for a new type of compact particle accelerator.
More Terahertz News and Terahertz Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...