Nav: Home

Use of antibiotics in preemies has lasting, potentially harmful effects

September 09, 2019

Nearly all premature babies receive antibiotics in their first weeks of life to ward off or treat potentially deadly bacterial infections. Such drugs are lifesavers, but they also cause long-lasting collateral damage to the developing microbial communities in the babies' intestinal tracts, according to research from Washington University School of Medicine in St. Louis.

A year and a half after babies leave the neonatal intensive care unit (NICU), the consequences of early antibiotic exposure remain, the study showed. Compared to healthy full-term babies in the study who had not received antibiotics, preemies' microbiomes contained more bacteria associated with disease, fewer species linked to good health, and more bacteria with the ability to withstand antibiotics.

The findings, published Sept. 9 in Nature Microbiology, suggest that antibiotic use in preemies should be carefully tailored to minimize disruptions to the gut microbiome - and that doing so might reduce the risk of health problems later in life.

"The type of microbes most likely to survive antibiotic treatment are not the ones we typically associate with a healthy gut," said senior author Gautam Dantas, PhD, a professor of pathology and immunology, of molecular microbiology, and of biomedical engineering. "The makeup of your gut microbiome is pretty much set by age 3, and then it stays pretty stable. So if unhealthy microbes get a foothold early in life, they could stick around for a very long time. One or two rounds of antibiotics in the first couple weeks of life might still matter when you're 40."

Healthy gut microbiomes have been linked to reduced risk of a variety of immune and metabolic disorders, including inflammatory bowel disease, allergies, obesity and diabetes. Researchers already knew that antibiotics disrupt the intestinal microbial community in children and adults in ways that can be harmful. What they didn't know was how long the disruptions last.

To find out whether preemies' microbiomes recover over time, Dantas and colleagues - including first author Andrew Gasparrini, PhD, who was a graduate student at the time the study was conducted, and co-authors Phillip I. Tarr, MD, the Melvin E. Carnahan Professor of Pediatrics, and Barbara Warner, MD, director of the Division of Newborn Medicine - analyzed 437 fecal samples collected from 58 infants, ages birth to 21 months. Forty-one of the infants were born around 2 ½ months premature, and the remainder were born at full term.

All of the preemies had been treated with antibiotics in the NICU. Nine had received just one course, and the other 32 each had been given an average of eight courses and spent about half their time in the NICU on antibiotics. None of the full-term babies had received antibiotics.

The researchers discovered that preemies who had been heavily treated with antibiotics carried significantly more drug-resistant bacteria in their gut microbiomes at 21 months of age than preemies who had received just one course of antibiotics, or full-term infants who had not received antibiotics. The presence of drug-resistant bacteria did not necessarily cause any immediate problems for the babies because most gut bacteria are harmless - as long as they stay in the gut. But gut microbes sometimes escape the intestine and travel to the bloodstream, urinary tract or other parts of the body. When they do, drug resistance can make the resulting infections very difficult to treat.

Moreover, by culturing bacteria from fecal samples taken eight to 10 months apart, the researchers discovered that the drug-resistant strains present in older babies were the same ones that had established themselves early on.

"They weren't just similar bugs, they were the same bugs, as best we could tell," Dantas said. "We had cleared an opening for these early invaders with antibiotics, and once they got in, they were not going to let anybody push them out. And while we didn't show that these specific bugs had caused disease in our kids, these are exactly the kind of bacteria that cause urinary tract and bloodstream infections and other problems. So you have a situation where potentially pathogenic microbes are getting established early in life and sticking around."

Further studies showed that all of the babies developed diverse microbiomes by 21 months of age - a good sign since lack of microbial diversity is associated with immune and metabolic disorders in children and adults. But heavily treated preemies developed diverse microbiomes more slowly than lightly treated preemies and full-term infants. Further, the makeup of the gut microbial communities differed, with heavily treated premature infants having fewer healthy groups of bacteria such as Bifidobacteriaceae and more unhealthy kinds such as Proteobacteria.

The findings already have led Warner, who takes care of premature infants in the NICU at St. Louis Children's Hospital, and her fellow neonatalogists to scale down their use of antibiotics.

"We're no longer saying, 'Let's just start them on antibiotics because it's better to be safe than sorry,'" Warner said. "Now we know there's a risk of selecting for organisms that can persist and create health risks later in childhood and in life. So we're being much more judicious about initiating antibiotic use, and when we do start babies on antibiotics, we take them off as soon as the bacteria are cleared. We still have to use antibiotics - there's no question that they save lives - but we've been able to reduce antibiotic use significantly with no increase in adverse outcomes for the children."
-end-


Washington University School of Medicine

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.