Nav: Home

One-atom switch supercharges fluorescent dyes

September 09, 2019

HOUSTON - (Sept. 9, 2019) - It only took the replacement of one atom for Rice University scientists to give new powers to biocompatible fluorescent molecules.

The Rice lab of chemist Han Xiao reported in the Journal of the American Chemical Society it has developed a single-atom switch to turn fluorescent dyes used in biological imaging on and off at will.

The technique will enable high-resolution imaging and dynamic tracking of biological processes in living cells, tissues and animals.

The Rice lab developed a minimally modified probe that can be triggered by a broad range of visible light. The patented process could replace existing photoactivatable fluorophores that may only be activated with ultraviolet light or require toxic chemicals to turn on the fluorescence, characteristics that limit their usefulness.

The researchers took advantage of a phenomenon known as photo-induced electron transfer (PET), which was already known to quench fluorescent signals.

They put fluorophores in cages of thiocarbonyl, the moeity responsible for quenching. With one-step organic synthesis, they replaced an oxygen atom in the cage with one of sulfur. That enabled them to induce the PET effect to quench fluorescence.

Triggering the complex again with visible light near the fluorescent molecule's preferred absorbance oxidized the cage in turn. That knocked out the sulfur and replaced it with an oxygen atom, restoring fluorescence.

"All it takes to make these is a little chemistry and one step," said Xiao, who joined Rice in 2017 with funding from the Cancer Prevention and Research Institute of Texas (CPRIT). "We demonstrated in the paper that it works the same for a range of fluorescent dyes. Basically, one reaction solves a lot of problems."

Researchers worldwide use fluorescent molecules to tag and track cells or elements within cells. Activating the tags with low-powered visible light rather than ultraviolet is much less damaging to the cells being studied, Xiao said, and makes the long exposures of living cells required by super-resolution imaging possible. Super-resolution experiments by Theodore Wensel, the Robert A. Welch Chair in Chemistry at Baylor College of Medicine, and his team confirmed their abilities, he said.

"We feel this will be a really good probe for living-cell imaging," Xiao said. "People also use photoactivatable dye to track the dynamics of proteins, to see where and how far and how fast they travel. Our work was to provide a simple, general way to generate this dye."

The researchers found their technique worked on a wide range of common fluorescent tags and could even be mixed for multicolor imaging of targeted molecules in a single cell.
-end-
Rice postdoctoral researcher Juan Tang is lead author of the paper. Co-authors are Rice graduate students Kuan-Lin Wu and Jingqi Pei; postdoctoral fellow Michael Robichaux of Baylor; and graduate student Nhung Nguyen and Yubin Zhou, an assistant professor at the Center for Translational Cancer Research at Texas A&M University. Xiao is the Norman Hackerman-Welch Young Investigator and an assistant professor of chemistry, biosciences, and bioengineering.

CPRIT, the Robert A. Welch Foundation, a Hamill Innovation Award, a John S. Dunn Foundation Collaborative Research Award and the National Institutes of Health supported the research.

Read the abstract at https://pubs.acs.org/doi/abs/10.1021/jacs.9b06237

This news release can be found online at https://news.rice.edu/2019/09/09/one-atom-switch-supercharges-fluorescent-dyes/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Xiao Lab: http://xiao.rice.edu/People/hanxiao/hanxiao.html

Department of Chemistry: https://chemistry.rice.edu

Video:

https://youtu.be/G1ZRjkMG_us

This super-resolution video of histone proteins using the thio-caged dye developed by Rice University scientists shows a 43-fold increase in fluorescence when triggered by visible light. It demonstrates the fluorophores' ability to reveal the fine structures of target proteins when combined with protein-labeling technologies. (Credit: Xiao Lab/Rice University and Wensel Lab/Baylor College of Medicine)

Images for download:

https://news-network.rice.edu/news/files/2019/08/0903_FLUORO-1-WEB.jpg

Rice University chemist Han Xiao and his colleagues have discovered a simple method to turn fluorescent tags on and off with visible light by switching one atom. (Credit: Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2019/08/0903_FLUORO-2-WEB-1.jpg

At top, a sequence shows the design of thio-caged dyes designed at Rice University to be triggered by visible light. At bottom, confocal and super-resolution imaging of a lipid droplet in living adipocytes incubated with BODIPY (green), SNile Red (red) and Hoechst 33342 (blue), followed by photoactivation using a 561 nm laser. Scale bar: 10 μm. Scale bar for super-resolution image of lipid droplet labeled with SNile Red, bottom right: 1 μm. (Credit: Xiao Lab/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Rice University

Related Living Cells Articles:

Genetically engineering electroactive materials in living cells
Merging synthetic biology and materials science, researchers genetically coaxed specific populations of neurons to manufacture electronic-tissue 'composites' within the cellular architecture of a living animal, a new proof-of-concept report reveals.
Physics of Living Systems: How cells muster and march out
Many of the cell types in our bodies are constantly on the move.
Bioprinting: Living cells in a 3D printer
A high-resolution bioprinting process has been developed at TU Wien (Vienna): Cells can now be embedded in a 3D matrix printed with micrometer precision -- at a printing speed of one meter per second, orders of magnitude faster than previously possible.
Living cells engineered to be computing and recording devices
Cells can be viewed as natural minicomputers that execute programs encoded in their DNA.
Designed protein switch allows unprecedented control over living cells
Scientists have created the first completely artificial protein switch that can work inside living cells to modify or even commandeer the cell's complex internal circuitry.
Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.
Engineering cellular function without living cells
EPFL scientists have come up with a systematic method for studying and even predicting gene expression - without using cells.
Acoustic waves can monitor stiffness of living cells
MIT engineers have devised a new, non-invasive way to monitor the stiffness of single living cells, using acoustic waves.
Measuring forces of living cells and microorganisms
Novel technique to measure forces produced by microorganisms as they move without harming them hopes to shine light on how bacteria move.
Artificial enzymes perform reactions on living cells
Nature has evolved thousands of enzymes to facilitate the many chemical reactions that take place inside organisms to sustain life.
More Living Cells News and Living Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.