Nav: Home

Scientists establish new way to test for drug resistant infections

September 09, 2019

Scientists have developed a method to test whether an infection is resistant to common antibiotics.

Beta-lactam antibiotics (such as penicillin) are one of the most important classes of antibiotics, but resistance to them has grown to such an extent that doctors often avoid prescribing them in favour of stronger drugs.

Scientists from the University of York modified an antibiotic from the beta-lactam family so that it can be attached to a sensor, enabling them to detect the presence of bacteria resistant to treatment.

The new method could lead to clinicians being able to rapidly detect whether an infection is treatable with common antibiotics, reserving stronger alternatives for the patients that need them most.

Antimicrobial resistance (AMR) is a major global threat accelerated by the inappropriate use of antibiotics.

Co-author of the study, Callum Silver, a PhD student from the Department of Electronic Engineering, said: "If we continue to use antibiotics in the way we currently do, we may find ourselves in a situation where we can no longer use antibiotics to treat patients - resulting in millions of deaths per year.

"This study paves the way for the development of tests which will give doctors important information on the bacteria they are dealing with so that common antibiotics can be used whenever possible. Resistance to new antibiotics can emerge very quickly after they come into use and so we need to reserve them for when they are really needed.

"The discovery may also help to identify and isolate resistant bacteria, reducing the chances of large outbreaks."

One of the major ways in which bacteria become resistant to treatment is through the production of enzymes that can break down beta-lactam antibiotics, rendering them ineffective.

The researchers were able to test for the presence of these resistance enzymes by attaching the modified antibiotic to a sensor surface which enabled them to see whether or not the drug was broken down.

The researchers used multiple techniques to show that the drug is still accessible to the enzyme, meaning the modified antibiotic could be used to develop things like urine tests for AMR bacteria in patients.

Callum Silver added: "The lack of diagnostic techniques to inform doctors whether or not they are dealing with resistant bacteria contributes to the problem of AMR."

"This modified antibiotic could be applied to a variety of different biosensing devices for use at the point-of-care."

Dr Steven Johnson, Reader in the University's Department of Electronic Engineering, said: "This important study is the result of a close collaboration between physical, chemical and biological scientists at the University of York and lays the foundation for a new diagnostic test for drug resistant infections.

"We are now working with clinicians at York Teaching Hospital NHS Foundation Trust to integrate this modified antibiotic into a rapid diagnostic test for antimicrobial resistance in urinary tract infections."
-end-
Surface-Bound Antibiotic for the Detection of β-Lactamases is published in the journal of Applied Materials and Interfaces.

University of York

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.