Nav: Home

New drug may protect against memory loss in Alzheimer's disease

September 09, 2019

BUFFALO, N.Y. ¬- A new drug discovered through a research collaboration between the University at Buffalo and Tetra Therapeutics may protect against memory loss, nerve damage and other symptoms of Alzheimer's disease.

Preclinical research found that the drug -- called BPN14770 -- deters the effects of amyloid beta, a hallmark protein of Alzheimer's that is toxic to nerve cells.

Recent studies find Alzheimer's may develop without dementia in nearly 25% of healthy 80-year-old patients, suggesting the body may turn to compensatory mechanisms to maintain the nervous system.

BPN14770, under development by Tetra Therapeutics, could help activate these mechanisms that support nerve health and prevent dementia, even with the progression of Alzheimer's.

Its benefits could also translate to Fragile X syndrome, developmental disabilities and schizophrenia, researchers say.

"Such observations imply that Alzheimer's pathology can be tolerated by the brain to some extent due to compensatory mechanisms operating at the cellular and synaptic levels," said Ying Xu, MD, PhD, co-lead investigator and research associate professor in the UB School of Pharmacy and Pharmaceutical Sciences.

"Our new research suggests that BPN14770 may be capable of activating multiple biological mechanisms that protect the brain from memory deficits, neuronal damage and biochemical impairments."

The study, published on Sept. 5 in the Journal of Pharmacology and Experimental Therapeutics, was also led by James M. O'Donnell, PhD, dean and professor of the UB School of Pharmacy and Pharmaceutical Sciences. Mark E. Gurney, PhD, chairman and chief executive officer of Tetra Therapeutics, based in Grand Rapids, Michigan, collaborated on the research.

Guarding memory against toxic proteins

The research, conducted in mice, discovered that BPN14770 inhibits the activity of phosphodiesterase?4D (PDE4D), an enzyme that plays a key role in memory formation, learning, neuroinflammation and traumatic brain injury.

PDE4D lowers cyclic adenosine monophosphate (cAMP) -- a messenger molecule that signals physiological changes such as cell division, change, migration and death -- in the body, leading to physical alterations in the brain.

cAMP has numerous beneficial functions, including improved memory. By inhibiting PDE4D, BPN14770 increases cAMP signaling in the brain, which ultimately protects against the toxic effects of amyloid beta.

"The role of PDE4D in modulating brain pathways involved in memory formation and cognition, and the ability of our PDE4D inhibitor to selectively enhance this process, has been well studied," said Gurney. "We are very excited by our colleagues' findings, which now suggest a second protective mechanism of action for BPN14770 against the progressive neurological damage associated with Alzheimer's disease."

"Developing effective drugs for memory deficits associated with Alzheimer's disease has been challenging," said O'Donnell. "BPN14770 works by a novel mechanism to increase cyclic AMP signaling in the brain, which has been shown to improve memory. The collaborative project has led to clinical trials that will begin to test its effectiveness."

Tetra Therapeutics is conducting Phase 2 clinical trials of BPN14770 in patients with early Alzheimer's and adults with Fragile X syndrome, a genetic disorder that causes intellectual and developmental disabilities.

Results of previous Phase 1 studies in healthy elderly volunteers suggest the drug benefits working, or immediate, memory. Animal studies found that BPN14770 has the potential to promote the maturation of connections between neurons, which are impaired in patients with Fragile X syndrome, as well as protect these connections, which are lost in patients with Alzheimer's.

"There has been enormous interest in our ongoing Phase 2 trial of BPN14770 in 255 patients with early Alzheimer's, and we are hopeful this study will show an impact of PDE4D modulation in this disease. Topline results are expected mid-2020," said Gurney.
-end-
The research was supported by the National Institutes of Health Blueprint Neurotherapeutics Network through the National Institute of Neurological Disorders and Stroke, National Institute on Aging and National Institute of Mental Health.

About Tetra Therapeutics

Tetra Therapeutics is a clinical stage biotechnology company developing therapeutic products for Alzheimer's disease, Fragile X syndrome, traumatic brain injury and other brain disorders.

For more information, please visit the company's website.

University at Buffalo

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.