Nav: Home

Researchers find regulator of first responder cells to brain injury

September 09, 2019

Astrocytes are the most abundant cells in the brain, yet there is still much to learn about them. For instance, it is known that when the brain is injured or diseased astrocytes are the first responders. They become reactive and play roles that can be both beneficial and deleterious, but little is known about how these diverse responses to injury are regulated. Working with mouse models, a multi-institutional group led by researchers at Baylor College of Medicine has identified nuclear factor I-A (NFIA) as a central regulator of both the generation and activity of reactive astrocytes.

Unexpectedly, NFIA's role seems to depend on the type of injury and on the region of the central nervous system where the injury occurs. The report also begins to define the molecular mechanisms involved, and shows that NFIA also is abundant in reactive astrocytes found in human pediatric and adult neurological injuries, suggesting that NFIA may play similar roles in people. The study appears in The Journal of Clinical Investigation. "Reactive astrocytes are associated with most forms of neurological disorders, from acute injury to degeneration, but their contributions to disease are only now coming to light," said corresponding author Dr. Benjamin Deneen, professor of neurosurgery and the Center for Stem Cell and Regenerative Medicine at Baylor.

Looking to better understand the roles these important cells play in neurological disorders, Deneen and his colleagues looked into NFIA, a known regulator of astrocyte development, to determine its role in the generation and regulation of reactive astrocytes.

First, they determined that NFIA is abundant in human pediatric and adult reactive astrocytes found in a host of neurological injuries. Then, to explore the role NFIA plays in the response of reactive astrocytes to injury, the researchers turned to mouse models. They generated mice in which NFIA was specifically eliminated in astrocytes, and compared the reactive astrocyte response of these NFIA-deficient mice to that of mice with NFIA after different types of neurological injury.

"The results were surprising," said Deneen, Dr. Russell J. and Marian K. Blattner Chair and member of the Dan L Duncan Comprehensive Cancer Center at Baylor. "Until now, it was thought that regardless of the type of injury or where it occurred in the central nervous system, reactive astrocytes would respond in the same way. Knocking out NFIA allowed us to uncover a previously unknown layer of functional diversity in reactive astrocytes."

When white matter injuries occurred in the spinal cord of NFIA-deficient mice, reactive astrocytes were generated and migrated toward the injury, but were not able to remodel the injured blood brain barrier as well as the reactive astrocytes of normal mice did. Consequently, the white matter was not repaired.

But when the researchers tested the response to a different form of injury in another region of the central nervous system, a stroke in the cerebral cortex, they observed something much different. While normal mice (with NFIA) responded to stroke by producing reactive astrocytes that migrated toward the injury to repair the bleeding, NFIA-deficient mice did not generate reactive astrocytes and the injury was not healed. In both cases, in the spinal cord and in the cerebral cortex, the injury was not properly repaired, but the underlying reasons for this were drastically different.

"These findings suggest that NFIA's function in reactive astrocytes is dependent upon the type of injury and brain region in which the injury occurs. In the cerebral cortex, NFIA is crucial for making reactive astrocytes, while in the spinal cord NFIA is important for sealing off leaking blood vessels. These results hint at an extensive reservoir of reactive astrocyte responses that vary based on form and location of injury," Deneen said.

In addition, the researchers began to define the molecular mechanisms underpinning the generation of reactive astrocytes. They found a direct connection between NFIA and thrombospondin 4. NFIA directly regulates the production of thrombospondin 4, a factor that had been previously identified in the lab of co-author Dr. Chay T. Kuo, associate professor of cell biology and neurobiology at Duke University, as an essential regulator of the generation of reactive astrocytes.

"Although our study was conducted in mice and much more research is needed, we think our findings may reflect what occurs in people, as NFIA also is abundantly present in reactive astrocytes in both pediatric and adult neurological injuries," Deneen said. "We also are interested in investigating the role of NFIA in reactive astrocytes in neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as it's entirely possible it has a completely different set of functions in these diseases."
Other contributors of this work include Dylan Laug, Teng-Wei Huang, Navish A. Bosquez Huerta, Yu-Szu Huang, Debosmita Sardar, Joshua Ortiz, Jeffrey C. Carlson, Benjamin R. Arenkiel, Carrie A. Mohila, Stacey M. Glasgow and Hyun Kyoung Lee. The authors are affiliated with one or more of the following institutions: Baylor College of Medicine, Texas Children's Hospital, Duke University and the University of California San Diego.

This work was supported by grants from the National Multiple Sclerosis Society (RG-1501-02756 and FG-1607-25417), the National Institutes of Health (NS096096 and S071153), the National Heart, Lung, and Blood Institute (NHLBI), NIH (T32-HL902332) and the David & Eula Winterman Foundation MS Research Endowment.

Baylor College of Medicine

Related Spinal Cord Articles:

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.
Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
New approach could jumpstart breathing after spinal cord injury
A research team at the Krembil Research Institute in Toronto has developed an innovative strategy that could help to restore breathing following traumatic spinal cord injury.
More Spinal Cord News and Spinal Cord Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at