Nav: Home

The diet-microbiome connection in inflammatory bowel disease

September 09, 2019

Much remains mysterious about the factors influencing human inflammatory bowel disease (IBD), but one aspect that has emerged as a key contributor is the gut microbiome, the collection of microorganisms dwelling in the intestines.

Diet is known to profoundly affect this microbial community, and special diets have been used as therapies for intestinal disorders including Crohn's disease in people. They're also commonly used in dogs, which can develop a chronic intestinal disease that mirrors many features of Crohn's.

In a new study published in the journal Microbiome, researchers from the University of Pennsylvania investigated the connection between a prescription diet, the gut microbiome, and a successful entry into disease remission in pet dogs receiving treatment at Penn Vet's Ryan Veterinary Hospital. They discovered key features of the microbiome and associated metabolic products that appeared only in dogs that entered disease remission. A type of bacteria that produces these compounds, known as secondary bile acids, alleviated disease in a mouse model. And comparing the impact of diet on the dog's microbiome with that seen during diet therapy in children with Crohn's, the study team found notable similarities.

"The bacteria in the gut are known to be a really important factor in tipping the scales toward disease," says Daniel Beiting, senior author on the work and an assistant professor in Penn's School of Veterinary Medicine. "And the environmental factor that seems to contribute the most to rapid changes in the microbiome is what you eat. Given that dogs' microbiomes are extremely similar to those of humans, we thought this was an intriguing model to ask, 'Could diet be impacting this disease through an impact on the microbiome?'"

To begin pursuing this question required treating a population of pet dogs with canine chronic enteropathy (CE), a chronic condition involving weight loss and gut inflammation, diarrhea, occasional vomiting, loss of appetite, and a chronic relapsing and remitting, just as seen in Crohn's disease. The study involved 53 dogs, 29 with CE being treated at Penn Vet's Ryan Veterinary Hospital, and 24 healthy controls.

Researchers collected stool samples at the outset of the study and at different times as the sick dogs began a prescription diet to treat their disease. Using advanced genetic sequencing techniques, the team developed a catalog of the microbes present in the stool, a stand-in for the animals' gut microbiome. They also collected information about the metabolic products present in the stool.

"That gives us a functional read-out of the microbiome," says Beiting. "It doesn't just tell us who is there but also what they're doing."

Twenty of the 29 sick dogs quickly entered remission. Together, the genomic and metabolite analyses revealed characteristic changes in these dogs. In particular, those that responded well to the diet tended to have an increase in metabolites known as secondary bile acids. These are produced when certain microbes in the gut consume the bile that is released by the liver.

One of these "good" microbes that can give rise to secondary bile acids was the bacterium Clostridium hiranonis, which the researchers found in greater numbers in dogs that went into remission. Dogs that responded well to the diet also had fewer harmful bacteria, such as Escherichia coli and Clostridium perfringens after starting treatment.

To learn more about what these apparent markers of remission were doing, the team took bacteria from the dogs--both when they were sick and after they had entered remission--and grew them in the lab.

"Having these organisms gave us the opportunity to test our hypothesis about what actually causes remission," says Shuai Wang, a postdoc at Penn Vet and the study's lead author.

Taking the secondary bile acids found to be associated with remission, the researchers applied them to the E. coli and C. perfringens grown from the sick dogs and found the bile acids inhibited their growth. They also gave C. hiranonis from the dogs to mice with a form of inflammatory bowel disorder to see if the bacteria could reduce disease in a different animal model.

"We observed a stabilization of secondary bile acid levels and reduced inflammation," Wang says.

"This allowed us to show that secondary bile acids and C. hiranonis aren't just biomarkers of remission," says Beiting, "they can actually effect change. Bile acids can block the growth of pathogens, and C. hiranonis can improve gut health in mice."

As a final step, the researchers looked to a dataset taken from children with Crohn's disease who were treated with a specialized liquid diet known as exclusive enteral nutrition. Youngsters who responded to the therapy had an increase in numbers of the bacteria species Clostridium scindens, which, like C. hiranonis, is a potent producer of secondary bile acids.

The authors say the findings offer hope for better dietary therapies for IBD, perhaps ones that deliver "good" bacteria such as C. scindens or C. hiranonis while suppressing disease-associated species.

"Similar environmental exposures of dogs and children make the canine IBD model an excellent model of pediatric inflammatory bowel disease," says Robert N. Baldassano, a study coauthor and pediatric gastroenterologist at Children's Hospital of Philadelphia. "This study has greatly improved our knowledge of pediatric IBD and will lead to new therapies for children suffering with this disease."
-end-
Daniel P. Beiting is an assistant professor in the Department of Pathobiology and technical director of the Center for Host-Microbe Interactions at the University of Pennsylvania School of Veterinary Medicine.

Shuai Wang is a postdoctoral fellow in Penn's School of Veterinary Medicine.

Robert N. Baldassano is a pediatric gastroenterologist and director of the Center for Pediatric Inflammatory Bowel Disease at Children's Hospital of Philadelphia.

Beiting, Wang, and Baldassano coauthored the study with Penn Vet's Rene Martins, Megan C. Sullivan, Ana M. Misic, Ayah El-Fahmawi, Kevin O'Brien, Ying Chen, Charles Bradley, Grace Zhang, Alexander S. F. Berry, Christopher Hunter, and Mark P. Rondeau; the Perelman School of Medicine's Elliot S. Friedman; and the Universidade de São Paulo's Elaine Cristina Pereira De Martinis.

The study was supported by the Margaret Q. Landenberger Family Research Foundation, the São Paulo Research Foundation, Brazil (Grant #2016/16293-5), and the Tobacco Formula/CURE program (Grant SAP #4100068710).

University of Pennsylvania

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.