Sampling the gut microbiome with an ingestible pill

September 09, 2020

Gut microbes affect human health, but there is still much to learn, in part because they're not easy to collect. But researchers now report in ACS Nano that they have developed an ingestible capsule that in rat studies captured bacteria and other biological samples while passing through the gastrointestinal (GI) tract.

Currently, researchers obtain gut microbes by collecting stool samples or using techniques such as colonoscopy or endoscopy. However, stool samples can't capture all the microorganisms in the upper GI tract, and they can't keep microbes from different parts of the tract separate. Colonoscopy and endoscopy are invasive procedures, which deters some patients. Sarvesh Kumar Srivastava and colleagues wanted to avoid these drawbacks by designing a device that could be swallowed and then eliminated.  

The researchers developed a self-polymerizing reaction system of poly(ethylene glycol) diacrylate monomer, iron chloride and ascorbic acid -- all loaded into tiny hollow cylinders. The cylindrical microdevices were packaged in miniature gelatin capsules, which were coated with a protective layer to prevent digestion in the stomach's acidic environment. After they were fed to rats, the capsules remained protected in the stomach but disintegrated in the small intestine's more-neutral pH, releasing the microdevices. Exposure to intestinal fluid caused the cylinders' chemical cargo to polymerize, forming a hydrogel that trapped microbes and protein biomarkers in its surroundings, much like an instant snapshot of the intestine. The devices, which didn't cause inflammation or toxicity, were then surgically removed -- a step that the researchers say will be replaced by natural elimination in future. High-throughput sequencing studies showed that the bacterial population the devices captured closely resembled that of the gut. The researchers also demonstrated that these tiny cylinders could be triggered over a range of pH to deliver biologics, like insulin, to cells in a petri dish in the presence of intestinal mucus. This technology could advance understanding of host-microbiome interactions, providing insight into associated GI disease progression and paving the way for personalized gut therapies, the team says.
-end-
The authors acknowledge funding from H.C. Ørsted COFUND, the European Union's Horizon 2020 Programme, the Danish National Research Foundation and Villum Fonden.

The abstract that accompanies this paper can be viewed here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.