Nav: Home

Prediction of protein disorder from amino acid sequence

September 09, 2020

In the last century, Anfinsen showed beyond a doubt that a protein can find its way back to its 'native' three-dimensional structure after it has been placed under 'denaturing conditions' where the protein structure is unfolded. The profound conclusion of his experiments was that apparently the information that governs the search back to the native state is hidden in the amino acid sequence. Thermodynamic considerations then set forth a view where the folding process is like rolling energetically downhill to the lowest point - to the unique native structure. These findings have often been intertwined with the central dogma of molecular biology. Thus, a gene codes for an amino acid sequence, and the sequence codes for a specific structure. 

Enter intrinsically disordered proteins.

The next breakthrough came with the advent of cheap and fast genome sequencing in the wake of the human genome project; once thousands of genomes of various organisms were sequenced, scientists made a staggering discovery - there were lots and lots of genes that coded for proteins with low-complexity. In other words, these proteins did not contain the right amino acids to fold up and experiments confirmed that they remained 'intrinsically disordered'. Also, the human genome turned out to have more than a third of its genes coding for protein disorder!

How to detect protein disorder?

Since disordered proteins are very flexible, they are not amenable to crystallization and therefore no information can be obtained from X-ray diffraction on protein crystals - the approach that has been so pivotal for folded proteins. Instead, these proteins must be studied in solution, and for this purpose NMR (Nuclear Magnetic Resonance) spectroscopy is the most suited tool. In this method, a quantum physical property called 'spin' is measured in a strong magnetic field for each atom in the molecule. The exact precession frequencies of the spins are a function of their environment, and it is exactly this frequency that allows researchers to quantitatively measure to which extent each amino acid is ordered or disordered in the protein.

In their new paper, published on 8 Sept 2020, Dr. Rupashree Dass together with Associate Professor Frans Mulder and Assistant Professor Jakob Toudahl Nielsen have used machine learning together with experimental NMR data for hundreds of proteins to build a new bioinformatics tool that they have called ODiNPred. This bioinformatics program can help other researchers making the best possible predictions of which regions of their proteins are rigid and which are likely to be flexible. This information is useful for structural studies, as well as understanding the biological role and regulation of intrinsically disordered proteins.

READ ALSO: Read more about the results in Scientific Reports:
ODiNPred: comprehensive prediction of protein order and disorder by Rupashree Dass, Frans A. A. Mulder & Jakob Toudahl Nielsen

The research was carried out by researchers from Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry at Aarhus University. The work was financially supported by VILLUM Fonden.

For further information, please contact


Associate Professor Frans A. A. Mulder
Interdisciplinary Nanoscience Center and Department of Chemistry
Aarhus University
Email: fmulder@chem.au.dk

Aarhus University

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.