Nav: Home

Physicists explain mysterious dark matter deficiency in galaxy pair

September 09, 2020

RIVERSIDE, Calif. -- A new theory about the nature of dark matter helps explain why a pair of galaxies about 65 million light-years from Earth contains very little of the mysterious matter, according to a study led by a physicist at the University of California, Riverside.

Dark matter is nonluminous and cannot be seen directly. Thought to make up 85% of matter in the universe, its nature is not well understood. Unlike normal matter, it does not absorb, reflect, or emit light, making it difficult to detect.

The prevailing dark matter theory, known as cold dark matter, or CDM, assumes dark matter particles are collisionless, aside from gravity. A newer second theory, called self-interacting dark matter, or SIDM, proposes dark matter particles self-interact through a new dark force. Both theories explain how the overall structure of the universe emerges, but they predict different dark matter distributions in the inner regions of a galaxy. SIDM suggests dark matter particles strongly collide with one another in a galaxy's inner halo, close to its center.

Typically, a visible galaxy is hosted by an invisible dark matter halo -- a concentrated clump of material, shaped like a ball, that surrounds the galaxy and is held together by gravitational forces. Recent observations of two ultra-diffuse galaxies, NGC 1052-DF2 and NGC 1052-DF4, show, however, that this pair of galaxies contains very little, if any, dark matter, challenging physicists' understanding of galaxy formation. Astrophysical observations suggest NGC 1052-DF2 and NGC 1052-DF4 are likely satellite galaxies of NGC1052.

"It is commonly thought that dark matter dominates the overall mass in a galaxy," said Hai-Bo Yu, an associate professor of physics and astronomy at UCR, who led the study. "Observations of NGC 1052-DF2 and -DF4 show, however, that the ratio of their dark matter to their stellar masses is about 1, which is 300 times lower than expected. To resolve the discrepancy, we considered that the DF2 and DF4 halos may be losing the majority of their mass through tidal interactions with the massive NGC 1052 galaxy."

Using sophisticated simulations, the UCR-led team reproduced the properties of NGC 1052-DF2 and NGC 1052-DF4 through tidal stripping -- the stripping away of material by galactic tidal forces -- by NGC1052. Because the satellite galaxies cannot hold the stripped mass with their own gravitational forces, it effectively gets added to NGC 1052's mass.

The researchers considered both CDM and SIDM scenarios. Their results, published in Physical Review Letters, indicate SIDM forms dark-matter-deficient galaxies like NGC 1052-DF2 and -DF4 far more favorably than CDM, as the tidal mass loss of the inner halo is more significant and the stellar distribution is more diffuse in SIDM.

The research paper has been selected as an "editors' suggestion" by the journal, an honor that only a select few papers receive each week to promote reading across fields.

Yu explained tidal mass loss could occur in both CDM and SIDM halos. In CDM, the inner halo structure is "stiff" and resilient to tidal stripping, which makes it difficult for a typical CDM halo to lose sufficient inner mass in the tidal field to accommodate observations of NGC 1052-DF2 and -DF4. In contrast, in SIDM, dark matter self-interactions could push dark matter particles from the inner to the outer regions, making the inner halo "fluffier" and enhancing the tidal mass loss accordingly. Further, the stellar distribution becomes more diffuse.

"A typical CDM halo remains too massive in the inner regions even after tidal evolution," Yu said.

Next, the team will perform a more comprehensive study of the NGC 1052 system and explore newly discovered galaxies with novel properties in an effort to better understand the nature of dark matter.
-end-
Yu was joined in the study by Daneng Yang and Haipeng An of Tsinghua University in Beijing, China. Yu was supported by grants from the U.S. Department of Energy and the U.S. National Science Foundation.

The title of the research paper is "Self-Interacting Dark Matter and the Origin of Ultradiffuse Galaxies NGC1052-DF2 and -DF4."

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email news@ucr.edu">news@ucr.edu.

University of California - Riverside

Related Dark Matter Articles:

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.
Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.
Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.