Nav: Home

Quantum shake

September 09, 2020

There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group. Held by lasers in a regular, lattice formation and "driven" by pulses of energy, these atoms were doing crazy things.

"It was a bit bizarre," Weld said. "Atoms would get pumped in one direction. Sometimes they would get pumped in another direction. Sometimes they would tear apart and make these structures that looked like DNA."

These new and unexpected behaviors were the results of an experiment conducted by Cao, Weld and colleagues to push the boundaries of our knowledge of the quantum world. The outcomes? New directions in the field of dynamical quantum engineering, and a tantalizing path toward a link between classical and quantum physics.

Their research is published in the journal Physical Review Research.

"A lot of funny things happen when you shake a quantum system," said Weld, whose lab creates "artificial solids" -- low-dimensional lattices of light and ultracold atoms -- to simulate the behavior of quantum mechanical particles in more densely packed true solids when subjected to driving forces. The recent experiments were the latest in a line of reasoning that stretches back to 1929, when physicist and Nobel Laureate Felix Bloch first predicted that within the confines of a periodic quantum structure, a quantum particle under a constant force will oscillate.

"They actually slosh back and forth, which is a consequence of the wave nature of matter," Weld said. While these position-space Bloch oscillations were predicted almost a century ago, they were directly observed only relatively recently; in fact Weld's group was the first to see them in 2018, with a method that made these often rapid, infinitesimal sloshings large and slow, and easy to see.

A decade ago, other experiments added a time dependency to the Bloch oscillating system by subjecting it to an additional, periodic force, and found even more intense activity. Oscillations on top of oscillations -- super Bloch oscillations -- were discovered.

For this study, the researchers took the system another step further, by modifying the space in which these atoms interact.

"We're actually changing the lattice," said Weld, by way of varying laser intensities and external magnetic forces that not only added a time dependency but also curved the lattice, creating an inhomogenous force field. Their method of creating large, slow oscillations, he added, "gave us the opportunity to look at what happens when you have a Bloch oscillating system in an inhomogenous environment."

This is when things got weird. The atoms shot back and forth, sometimes spreading apart, other times creating patterns in response to the pulses of energy pushing on the lattice in various ways.

"We could follow their progress with numerics if we worked hard at it," Weld said. "But it was a little bit hard to understand why they do one thing and not the other."

It was insight from Cao, the paper's lead author, that led to a way of deciphering the strange behavior.

"When we investigated the dynamics for all times at once, we just saw a mess because there was no underlying symmetry, making the physics challenging to interpret," said Cao, who is beginning his fourth year at UCSB's College of Creative Studies.

To draw out the symmetry, the researchers simplified this seemingly chaotic behavior by eliminating a dimension (in this case, time) by utilizing a mathematical technique initially developed to observe classical nonlinear dynamics called a Poincaré section.

"In our experiment, a time interval is set by how we periodically modify the lattice in time," Cao said. "When we chucked out all the 'in-between' times and looked at the behavior once every period, structure and beauty emerged in the shapes of the trajectories because we were properly respecting the symmetry of the physical system." Observing the system only at periods based on this time interval yielded something like a stop-motion representation of these atoms' complicated yet cyclical movements.

"What Alec figured is that these paths -- these Poincaré orbits -- tell us exactly why in some regimes of driving the atoms get pumped, while in other regimes of driving the atoms spread out and break up the wave function," Weld added. One direction the researchers could take from here, he said, is to use this knowledge to engineer quantum systems to have new behaviors through driving, with applications in burgeoning fields such as topological quantum computing.

"But another direction we can take is looking at whether we can study the emergence of quantum chaos as we start to do things like add interactions to a driven system like this," Weld said.

It's no small feat. Physicists for decades have been trying to find links between classical and quantum physics -- a common math that might explain concepts in one field that seem to have no analog in the other, such as classical chaos, the language for which does not exist in quantum mechanics.

"You've probably heard of the butterfly effect -- a butterfly flapping its wings in the Caribbean can cause a typhoon somewhere across the world," said Weld. "That's actually a feature of classical chaotic systems, which have a sensitive dependence on initial conditions. That feature is actually very hard to reproduce in quantum systems -- it's puzzling to come up with the same explanation in quantum systems. So this is maybe a small piece of that body of research."

University of California - Santa Barbara

Related Quantum Systems Articles:

Avoiding environmental losses in quantum information systems
New research published in EPJ D has revealed how robust initial states can be prepared in quantum information systems, minimising any unwanted transitions which lead to losses in quantum information.
New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.
Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms
Scientists develop first quantum algorithm to characterize noise across large systems
Quantum systems are notoriously prone to errors and noise. In order to overcome this and build a functional quantum computer, physicists should ideally understand the noise across an entire system.
Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.
Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.
Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.
Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.
A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.
Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.
More Quantum Systems News and Quantum Systems Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.