NASA infrared imagery shows Tropical Storm Rene's seesaw of strength

September 09, 2020

Tropical Storm Rene weakened to a tropical depression late on Sept. 8 but regained tropical storm status on Sept. 9. Infrared imagery from NASA's Aqua satellite captured Rene as it was twice transitioning.

Rene has been battling wind shear in the eastern North Atlantic Ocean and when NASA's Aqua satellite passed over the storm on Sept. 8, it found Rene weakening although still a tropical storm. Wind shear occurs when winds blowing outside of a tropical cyclone at different levels of the atmosphere push against the tropical cyclone and weaken it.

NASA's Infrared Views of Rene

Tropical cyclones are made up of hundreds of thunderstorms, and infrared data can show where the strongest storms are located. That is because infrared data provides temperature information, and the strongest thunderstorms that reach highest into the atmosphere have the coldest cloud top temperatures.

On Sept. 8 at 10:59 a.m. EDT (1459 UTC), NASA's Aqua satellite analyzed the storm using the Atmospheric Infrared Sounder or AIRS instrument. The AIRS imagery showed the strongest storms east of the center of circulation, and in fragmented bands west of the center where coldest cloud top temperatures as cold as or colder 210 Kelvin minus 81 degrees Fahrenheit (minus 63.1 degrees Celsius). NASA research has shown that cloud top temperatures that cold indicate strong storms that have the capability to create heavy rain.

By 11 p.m. EDT on Sept. 8, although Rene had weakened to a tropical depression, infrared imagery revealed a burst of strong convection with cloud tops colder than minus 80 degrees Celsius (minus 112 Fahrenheit) had developed over and to the west of the center, while a fragmented band of convection had formed in the northern semicircle.

On Sept. 8 at 11:15 p.m. EDT (Sept. 9 at 0315 UTC), the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua satellite used infrared light to analyze the strength of storms within Rene. MODIS showed that burst of convection and showed the most powerful thunderstorms had cloud top temperatures were as cold as or colder than minus 80 degrees Fahrenheit (minus 62.2 Celsius). Strong storms with cloud top temperatures as cold as minus 70 degrees Fahrenheit (minus 56.6. degrees Celsius) surrounded that area. NASA research has found that cloud top temperatures that cold indicate strong storms with the potential to generate heavy rainfall.

Rene's outflow was symmetrical in all quadrants, but because scatterometer data showed that its winds dropped to 30 knots (35 mph/56 kph) per hour, it was classified as a tropical depression. Less than six hours later, infrared imagery showed Rene was becoming better organized and in an additional six hours, it would regain its strength.

On Sept. 9 at 11 a.m. EDT, Richard Pasch, Senior Hurricane Specialist at NOAA's National Hurricane Center in Miami, Fla. noted, "Although easterly wind shear has been affecting the system, Rene is producing vigorous deep convection, along with a broad convective band, over its western semicircle. Scatterometer data indicate winds to 35 knots [40 mph/65 kph] over the northwestern quadrant, and therefore the system is again being designated as a tropical storm."

Rene's Status on Sept. 9

At 11 a.m. EDT (1500 UTC) on Sept. 9, Rene re-strengthened into a tropical storm. At that time, the center of Tropical Storm Rene was located near latitude 17.6 degrees north and longitude 31.5 degrees west. Rene is moving toward the west-northwest near 13 mph (20 kph). The estimated minimum central pressure is 1003 millibars. Satellite-derived wind data indicate that the maximum sustained winds have increased to near 40 mph (65 kph) with higher gusts.

Rene's Forecast from NHC

The NHC forecasts additional strengthening during the next 48 hours and a motion toward the west-northwest is expected for the next couple of days, followed by a turn to the northwest.
-end-
NASA Researches Earth from Space

For more than five decades, NASA has used the vantage point of space to understand and explore our home planet, improve lives and safeguard our future. NASA brings together technology, science, and unique global Earth observations to provide societal benefits and strengthen our nation. Advancing knowledge of our home planet contributes directly to America's leadership in space and scientific exploration.

For updated forecasts, visit: http://www.nhc.noaa.gov

By Rob Gutro
NASA's Goddard Space Flight Center

NASA/Goddard Space Flight Center

Related Tropical Storm Articles from Brightsurf:

NASA finds powerful storm's around Tropical Storm Cristina's center
A low-pressure area strengthened quickly and became Tropical Storm Cristina in the Eastern Pacific Ocean and infrared imagery from NASA revealed the powerful thunderstorms fueling that intensification.

NASA satellite gives a hello to tropical storm Dolly
During the morning of June 23, the fourth system in the Northern Atlantic Ocean was a subtropical depression.

NASA follows Tropical Storm Nuri's path
An animation of four days of imagery from NASA's Terra satellite showed the progression and landfall of Tropical Storm Nuri.

NASA finds an elongated Phanfone now a tropical storm
NASA-NOAA's Suomi NPP satellite provided a visible image of Phanfone as it continues moving through the South China Sea.

Tropical Storm Krosa gets a comma shape
Tropical Storm Krosa continued on its journey northward in the Northwestern Pacific Ocean when NOAA's NOAA-20 polar orbiting satellite passed overhead and captured a visible image of the strengthening storm in a classic tropical cyclone shape.

Satellite shows Tropical Storm Flossie holding up
Satellite imagery showed that Tropical Storm Flossie's structure didn't change much overnight from July 31 to August 1.

NASA tropical storm Erick strengthening
Infrared imagery from NASA's Aqua satellite revealed a stronger Tropical Storm Erick in the Eastern Pacific Ocean.

GPM satellite provides a 3D look at Tropical Storm Barry
The Global Precipitation Measurement mission or GPM core satellite provided a couple of views of Tropical Storm Barry that showed its cloud heights and rainfall rates.

NASA looks at Tropical Storm Funani's rainfall
Tropical Storm Funani (formerly classified as 12S) continued to affect Rodrigues Island in the South Pacific Ocean when the GPM satellite passed overhead and analyzed its rainfall.

NASA sees Tropical Storm Man-yi approaching typhoon strength Tropical Storm Man-Yi con
Tropical Storm Man-Yi continued to strengthen in the Northwestern Pacific Ocean as NASA-NOAA's Suomi NPP satellite provided a visible image of the storm.

Read More: Tropical Storm News and Tropical Storm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.