UGA researcher unlocks links between complex carbohydrates and spread of cancer

September 10, 2001

Research at the University of Georgia may lead to a revolutionary breed of treatments aimed at preventing the spread of cancer. Michael Pierce, a professor of biochemistry and molecular biology, has discovered an enzyme that could help unravel the mystery of how cancer spreads in the human body. If he and his team of researchers can find an inhibitor of this enzyme that works in the body, they may be able to develop a drug that would bind to that enzyme and prevent or slow the migration of cancer cells.

"The real killer is when cancer spreads. Almost every cancer that kills does so because it invades tissues and then moves to another location," Pierce said. "If you can remove the tumor and irradiate everything around it, there's a good chance the person will survive. If the cancer cells have gone to another tissue, you can't really find the tumor until it grows larger and by then it's very difficult to treat."

In his lab at UGA's Complex Carbohydrate Research Center, Pierce works to understand how carbohydrates affect cell adhesion and migration. His research, which focuses on breast and pancreatic cancer, is supported by grants of more than $2 million from the National Cancer Institute.

To migrate, a cell must achieve a delicate balance between holding on and letting go. Pierce compares it to walking on a frozen pond. Somewhere between slipping on the ice and freezing to it is the amount of traction that will allow movement.

"A cell has to be able to adhere in order to move, but if it adheres too much, it stops moving," Pierce said.

The surface of every cell contains complex carbohydrate structures that are similar to the branches of a tree. These carbohydrates are integral to the proper function of the receptors on a cell's surface that serve as a communication network.

Receptors receive messages at the cell surface and send information back to the nucleus - information that influences whether a cell divides, stays in one place, or migrates to another part of the body.

When a cell becomes cancerous, its carbohydrate branches change and so do the messages sent back to the nucleus. Starting with the altered branches, Pierce and his team worked backward to find what caused these carbohydrate changes, eventually identifying the enzyme GnT-V, which was patented through the University of Georgia Research Foundation.

Subsequent studies have revealed that when a cell is forced to produce large amounts of GnT-V, adhesion goes down and the rate of migration goes up. Over-produced in many cancer cells, GnT-V accelerates cancer invasion.

Inhibiting GnT-V activity appears to slow progression of some cancers. If Pierce can create a specific inhibitor of GnT-V that works in the body, preventing the spread of some cancers might be achieved with a simple injection.

There are also diagnostic possibilities for Pierce's research. Diagnosing a specific malignancy could become as simple as screening a blood sample.

"Cancer biotechnology is now starting to yield promise," Pierce said. "The key to curing cancer still will be early detection and early intervention that keeps the cancer from spreading."
-end-


University of Georgia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.