From embryo to placenta, gene transfer in primates a success

September 10, 2001

MADISON - By successfully inserting a gene from a jellyfish into the fertilized eggs of rhesus monkeys, scientists have managed to make transgenic placentas, placentas where the inserted gene functions as it does in the jellyfish.

Writing today, Sept. 11, in the Proceedings of the National Academy of Sciences, Thaddeus G. Golos of the Wisconsin Regional Primate Research Center at the University of Wisconsin-Madison, described the successful insertion of a "reporter gene" into two fertilized rhesus macaque embryos. The gene, which causes jellyfish cells to produce a robust green glow, likewise conferred this activity on the placental cells where it was found.

"The infants produced here did not carry the gene in their DNA," Golos says, "but they did carry it and produce large amounts of the transgenic protein within their placentas during pregnancy."

In mammals, the placenta develops in the uterus from the embryo during gestation. Its role is to provide nourishment to the developing fetus and to transfer fetal wastes to the maternal circulation.

This new work, Golos says, will help provide a way to explore the role that individual genes play in pathologies of pregnancy. It promises new insight into such problems in maternal and fetal health as infertility, recurrent spontaneous miscarriage, and fetal growth and low birth weight.

"These are the most important issues in terms of a healthy pregnancy," Golos says. "A healthy placenta is a requirement for a healthy fetus. Placental defects and problems are the causes of significant fetal and maternal morbidity and mortality."

Because the green-glow gene can be seen in cells, it is a much used "reporter" gene that can tell scientists that it has been effectively delivered to the host cell.

The work reported today by the Wisconsin group is important because it is the first time a gene that has been transferred into a primate embryo has been shown to be functional throughout development to a successful live birth. It also demonstrates that successful pregnancy is possible when genes foreign to the mother are engineered into the embryos of nonhuman primates.

The Wisconsin group adapted technology currently in development for human gene therapy by using extensively modified components of the genetic material of HIV as a vector to ferry the gene into the cells of early-stage rhesus monkey embryos. The vector, Golos says, is stripped of disease-causing genes and employs just a small percentage of the HIV genome to trick embryonic cells into accepting the transgene.

In effect, Golos says, the vector, which was developed by Robert G. Hawley at the American Red Cross Holland Laboratory, is used to "package the transgene into a noninfectious viral particle, and to allow the transgene to be inserted into the genome of the embryo."

The engineered embryos were then implanted in surrogate rhesus macaque mothers and carried to term. One of the pregnancies resulted in twins, but only one twin survived to term. Twin pregnancies are rare in rhesus monkeys.

Because rhesus macaques are genetically very close to humans, the work underscores the potential of the rhesus macaque as a model for future studies to establish the safety and effectiveness of human gene and stem cell therapy. The work is just a small step away from making a truly transgenic monkey, where foreign DNA is not only transferred from one species to another but is functional as well. A more immediate consideration, Golos says, is that the accomplishment forms the basis for new experimental insights into placental health and function.

Last January, a group at the Oregon Regional Primate Research Center reported the birth of a single rhesus monkey carrying transgenic DNA. Although the Oregon monkey carried the foreign DNA, the introduced DNA did not produce the protein that the transgene is supposed to make.

"This is an important distinction," Golos says, "since the success of transgenic or gene transfer studies is determined by whether or not the protein is produced."

Golos notes that the surrogate mothers carrying the engineered embryos developed antibodies to the jellyfish protein at about mid-pregnancy. Despite this immune response, the pregnancies were carried successfully to term, demonstrating that primate embryos with working transgenes are a viable experimental model for exploring how the maternal immune system accepts the fetus, whose genes are, in part, inherited from the father.

"Scientists can now devise experiments to learn the role of individual genes in human female reproductive health, and maternal and fetal well-being," Golos says.
-end-
Co-authors of the paper include M.J. Wolfgang, S.G. Eisele, M.A. Browne, M.L. Schotzko, M.A. Garthwaite, M Durning and J.A. Thomson, all of UW-Madison; and A. Ramezani and R.G. Hawley of the American Red Cross.

The Holland Laboratory is the research and development division of American Red Cross Biomedical Services, supporting the organization's Blood, Tissue and Plasma Services, and the Center for Cellular Therapy.
The work of the Wisconsin team was supported by the National Institutes of Health.

NOTE TO REPORTERS: Golos can be reached by e-mail over the weekend. For assistance in contacting Golos, you may leave a message for Terry Devitt, 608-262-8282, trdevitt@facstaff.wisc.edu. Devitt will check voice mail for messages from reporters who may need to contact Golos.

NOTE TO PHOTO EDITORS: High-resolution images to accompany this story are available for downloading at: http://www.news.wisc.edu/newsphotos/transgenic.html

NOTE TO GRAPHICS EDITORS: An informational graphic in EPS outline version is available for downloading at: http://www.news.wisc.edu/newsphotos/transgenic.html

NOTE TO TV ASSIGNING EDITORS: B-roll to accompany this story is available by contacting Jordana Lenon, 608-263-7024, jlenon@primate.wisc.edu

University of Wisconsin-Madison

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.