Ethnicity and cancer susceptibility

September 10, 2006

(London, September 10) Researchers from the UCL Branch of the global Ludwig Institute for Cancer Research (LICR) have uncovered how a genetic variation present in ethnic groups from around the equator may influence cancer susceptibility. The findings published in Nature Genetics have implications for pharmacogenetics, the study of how inherited variations may affect drug metabolism and response, and present a target for future 'designer' cancer therapies.

The p53 tumor-suppressor protein removes damaged cells by a programmed cell death (apoptosis). When the p53 gene is mutated - as it is in approximately half of all human cancers - damaged cells do not die, but rather continue to grow and divide and eventually form a tumor. The two most common polymorphic forms of p53 are p53Pro72 and p53Arg72 and the distribution varies in different ethnic groups. The two forms differ by just one amino acid in the protein sequence. Several years ago, the LICR team discovered that the ability of p53 to control apoptosis is regulated by the ASPP family of proteins.

In this study, the investigators showed that the ASPP family preferentially regulates the p53Pro72 over p53Arg72 form. These results suggest that ASPP protein levels determine cancer susceptibility in people with the p53Pro72 form, the prevalence of which is linked closely to latitude.

According to Professor Xin Lu, the senior author of the study and Director of the LICR Branch, the occurrence of the p53Pro72 form is highest in ethnic populations from around the equator. "It's really interesting to speculate whether the increased exposure to DNA-damaging ultraviolet radiation has resulted in the need for a second level of p53-regulation. The results are important for furthering our understanding of how p53, the tumor suppressor, is regulated, and also offers intriguing hints about how these regulatory mechanisms might have evolved."

While speculations about how the mechanism evolved are largely academic at this stage, Professor Lu says the findings have practical applications for future cancer therapies and the growing field of pharmacogenetics. "It's not hard to imagine a scenario in the future where we might examine the p53 sequence of a cancer patient as part of tailoring an individualized therapeutic strategy. If the patient has p53Pro72, then she might get a specific therapy that alters ASPP protein levels to re-activate p53's anti-cancer function. If the patient has p53Arg72, we know the therapy would be less effective."
-end-


Ludwig Institute for Cancer Research

Related Tumor Suppressor Articles from Brightsurf:

New results on the function of the tumor suppressor HERC protein
The RAF protein could be a therapeutical target to treat the tumor growth in regulated pathways by the p38 protein, according to a new study published in the journal Scientific Reports by a team of experts of the Faculty of Medicine and Health Sciences of the University of Barcelona and the Bellvitge Institute for Biomedical Research (IDIBELL).

New function for potential tumor suppressor in brain development
New research from the group of Simon Hippenmeyer, professor at the Institute of Science and Technology Austria (IST Austria), has now uncovered a novel, opposite role for Cdkn1c.

Researchers determine how a major tumor suppressor pathway becomes deactivated
The Hippo pathway is an important biological tumor suppressor program that controls cell growth and organ size in humans.

Nanoparticle therapeutic restores function of tumor suppressor in prostate cancer
Leveraging advances in mRNA and nanotechnology, investigators demonstrate that tumor suppressor PTEN can be restored in preclinical models of prostate cancer.

Discovery of a new tumor suppressor previously thought to be an oncogene
A gene that has for decades been considered a tumor promoter, the PLK1 gene, can also perform the exact opposite function: halting the development of cancer.

Unraveling role of tumor suppressor in gene expression & ovarian tumorigenesis
The tumor suppressor protein ARID1A controls global transcription in ovarian epithelial cells, according to new research conducted at The Wistar Institute, which provided mechanistic insight into tumorigenesis mediated by ARID1A loss in ovarian cancer.

Tumor suppressor protein plays key role in suppressing infections
Researchers have found that a previously uncharacterized tumor-suppressor protein plays an important role in the functioning of the immune system.

Tumor suppressor protein targets liver cancer
Salk Institute scientists, together with researchers from Switzerland's University of Basel and University Hospital Basel, discovered a protein called LHPP that acts as a molecular switch to turn off the uncontrolled growth of cells in liver cancer.

Stanford-led study uncovers mutation that supercharges tumor-suppressor
Stanford scientists have found an answer to one of cancer biology's toughest and most important questions: how does the body suppress tumors?

Injecting activator of a powerful tumor suppressor directly into the cancer increases tumor destruction, decreases toxicity
Directly injecting a tumor with an agent that activates a natural, powerful tumor suppressor enhances the drug's capacity to attack the tumor both locally and where it spreads, scientists report in the journal Cancer Research.

Read More: Tumor Suppressor News and Tumor Suppressor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.