Many roads lead to superconductivity

September 10, 2010

Since their discovery in 2008, a new class of superconductors has precipitated a flood of research the world over. Unlike the previously familiar copper ceramics (cuprates), the basic structure of this new class consists of iron compounds. Because the structure of these compounds differs from the cuprates in many fundamental ways, there is hope of gaining new insights into how the phenomenon of superconductivity arises.

In cooperation with an international research group, researchers from Helmholtz-Zentrum Berlin (HZB) have now discovered a magnetic signature that occurs universally among all iron-based superconductors, even if the parent compounds from which the superconductors are made possess different chemical properties. Their findings are published in Nature Materials (DOI: 10.1038/NMAT280).

Superconductors are generally produced by "doping" so-called parent compounds, which means introducing foreign atoms into them. There is a strong correlation between magnetism and superconductivity here - both being properties of solids.

Conventional superconductors, such as those used in MRI machines in hospitals, do not like magnetism because it disturbs the interactions that lead to superconductivity within the crystal. It is quite a different story for the celebrated high-temperature superconductors, such as cuprates and iron-arsenic compounds. In these cases, the magnetic forces actually help, even promote the onset of superconductivity. These compounds feature magnetic orders which, if they occur in a crystalline structure, are a telltale sign that the material is suitable to be a high-temperature superconductor.

With the new iron-based superconductors, it turns out that the symmetry of a magnetic order corresponds exactly to the symmetry in the superconductivity signal.

Dimitri Argyriou (HZB) and his colleagues have produced iron-tellurium-selenium crystals and determined their chemical composition using X-ray and neutron diffraction. They measured the magnetic signals in the crystals by performing neutron scattering experiments on the research reactor BER II of HZB and on the research reactor of the Institute Laue-Langevin in Grenoble.

They discovered that the symmetry of the magnetic order is significantly different from that of other iron-based parent compounds, such as iron-arsenic compounds. Yet, surprisingly, this difference has no impact on the development of superconductivity as a property. It has been detected that the magnetic signal caused by superconductivity - often referred to as the magnetic resonance - has the same symmetry as that of the magnetic order. And this is the same in all iron compounds, and apparently follows a universal mechanism that causes superconductivity for all of these materials.

Dimitri Argyriou describes this property as follows: "Going by what we know about the magnetic order of iron compounds, the iron-tellurium-selenium materials ought not to exhibit any superconductivity. But the opposite is the case: Despite the differences in magnetism, the signature of their superconductivity is the same. If we were now to understand how superconductivity arises in light of different starting conditions, then we could perhaps develop materials that are superconductive at even higher temperatures."
-end-


Helmholtz Association

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.