Wake Forest Baptist leads $24 million project to develop 'Body on a Chip'

September 10, 2013

WINSTON-SALEM, N.C. - Sept. 10, 2013 - Whether it's the Ebola virus or Sarin and Ricin, a key to responding to chemical or biological attacks is having effective antidotes at the ready. To accelerate the development of new therapies, Wake Forest Baptist Medical Center's Institute for Regenerative Medicine is leading a unique $24 million federally funded project to develop a "body on a chip" that will be used to develop these countermeasures.

This contractual effort was awarded by Space and Naval Warfare Systems Center, Pacific (SSC Pacific), on behalf of Defense Threat Reduction Agency (DTRA). The goal is to build a miniaturized system of human organs to model the body's response to harmful agents and develop potential therapies. This approach has the potential to reduce the need for testing in animals, which is expensive, slow, and has results that aren't always applicable to people.

"Miniature lab-engineered, organ-like hearts, lungs, livers and blood vessels - linked together with a circulating blood substitute - will be used both to predict the effects of chemical and biologic agents and to test the effectiveness of potential treatments," said Anthony Atala, M.D., institute director and lead investigator on the project. "We are fortunate to have experts from around the country join us on this effort."

The "body on a chip" concept is possible because of advances in micro-tissue engineering and micro-fluidics technologies. It is based on similar accomplishments in the electronics industry. Rather than miniaturizing electronics on a chip, however, researchers are miniaturizing human organs, monitoring devices and laboratory processes.

The project involves using human cells to create tiny organ-like structures that mimic the function of the heart, liver, lung and blood vessels. Placed on a 2-inch chip, these structures will be connected to a system of fluid channels and sensors to provide on-line monitoring of individual organs and the overall organ system.

The circulating blood substitute will keep the cells alive and can be used to introduce chemical or biologic agents, as well as potential therapies, into the system. Hollow channels will automatically guide the toxins or therapies that are being evaluated from one tissue to the next and sensors will measure real-time temperature, oxygen levels, PH and other factors.

"If successful, the platforms established under the eX Vivo Capabilities for Evaluation and Licensure (X.C.E.L.) program would significantly decrease the time and cost needed to develop medical countermeasures which would have a direct and positive affect on the ability of the United States government to respond to a chemical or biological attack," said Dr. Clint Florence, acting branch chief of vaccines within the Translational Medical Division at DTRA. "A long-term goal of this research is to explore the potential for this technology to reduce the overall burden of in vivo testing in the development and management of products for human use by accurately predicting human safety, efficacy and pharmacokinetics of candidate Medical Countermeasures (MCMs)."

Wake Forest Baptist's one-of-a-kind 3-D printer will be used to print the organoids onto the chip. Other partners on the project - and the expertise they will contribute - are: While the idea of culturing 3D human tissue on a chip is not new, this will be one of the first efforts to combine several organs in the same device to model the human response to chemical toxins or biologic agents. It is hoped that the system can also identify pre-symptomatic "biomarkers" of exposure and assess the effectiveness of treatment.
-end-
WFIRM scientists serving as co-investigators on the project are Shay Soker, Ph.D., Colin E. Bishop, Ph.D., John Jackson, Ph.D., Sang Jin Lee, Ph.D., and James Yoo, M.D., Ph.D. Other team members include Pedro Baptista, PharmD, Ph.D., Aleksander Skardal, Ph.D., Young-Joon Seol, Ph.D., Dipen Vyas, MSc, and Hyun-Wook Kang, Ph.D.

Media contacts:


Karen Richardson
krchrdsn@wakehealth.edu
336-716-4453

Media Relations Office
336-716-4587.

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, N.C. The institution comprises Wake Forest School of Medicine, a leading center for medical education and research; Wake Forest Baptist Health, the integrated clinical structure that includes nationally ranked Brenner Children's Hospital; Wake Forest Innovations, which promotes the commercialization of research discoveries and operates Wake Forest Innovation Quarter, an urban research and technology park; plus a network of affiliated community hospitals, physician practices, outpatient services and other medical facilities. Wake Forest Baptist clinical programs and the School of Medicine are regularly ranked among the best in the country by U.S. News & World Report.

Wake Forest Baptist Medical Center

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.