Nav: Home

Your stomach bacteria determines which diet is best for weight reduction

September 10, 2015

New research enables "tailored" diet advice - based on our personal gut microbiome - for persons who want to lose weight and reduce the risk of disease. Systems biologists at Chalmers University of Technology have for the first time successfully identified in detail how some of our most common intestinal bacteria interact during metabolism.

The researchers at Chalmers University of Technology have developed a mathematical calculation platform that makes it possible to predict how different patients will respond to a modified diet, depending on how their gut microbiome is composed.

Work has been conducted in cooperation in the context of the EU funded project Metacardis, coordinated by professor Karine Clement at Institute of Cardiometabolism and Nutrition (Ican, Pitié-Salpêtrière Hospital, Inserm/Sorbonne University) in Paris and also includes professor Fredrik Bäckhed at the University of Gothenburg.

"This method allows us to begin identifying each individual bacteria type's metabolism and thus get a handle on the basic mechanisms in human metabolism," says Jens Nielsen, professor of systems biology at Chalmers and head of the research team.

There can be up to 1,000 different types of bacteria and other microorganisms in the human digestive system, many of which take part in metabolism in one way or another. The composition of the human gut microbiome greatly varies between individuals, for reasons that are largely unknown. However, research over the past few years has shown that there is a connection between some diseases and the composition of the gut microbiome.

"This is clear as regards type 2 diabetes, hardening of the arteries and obesity, for example. There are also indications that the same might apply to depression and the body's ability to respond to various cancer treatments," says Jens Nielsen.

Exactly how microorganisms interact with food, the individual and not least each other is extremely complex. Until now it has been very difficult to gain understanding of what the causal links are. In a study that was recently published in Cell Metabolism, however, researchers prove, through clinical trials, that the mathematical modelling they developed works.

The point of departure is a diet experiment that was performed at Ican. First the gut microbiome was characterised for individuals in a group of overweight patients, and then they were put on a weight loss diet. Everyone lost weight, which was expected. In patients with low-diversity gut microbiome, however, the content of several substances that generally indicate health risks was also reduced in the individuals' blood and faeces. This was a deviation from the patients who had gut microbiome with greater "biological diversity". Their health situation was not affected to the same extent.

Of real interest, however, is that the systems biologists from Chalmers with their modelling tools have largely been able to explain why both patient groups reacted as they did to the diet.

"Amongst other things, we have been able to demonstrate that the intestines of the individuals with low-diversity gut microbiome produce fewer amino acids when they follow this diet. This is one explanation for the improved blood chemistry.

In the short term, Jens Nielsen believes the research will make it easier for physicians to identify overweight patients who are at higher risk of cardiometabolic disease and could truly achieve major health benefits by modifying their diet and losing weight. Fairly soon it should be possible to design diet recommendations that take the gut microbiome of individual patients into account. Karine Clement is already thinking along these lines and new follow up clinical experiments are being designed.

"In the long term we might be able to add intestinal bacteria for patients whose metabolism does not function properly," she explains.

What are known as probiotics are already being used - various yoghurt cultures are one example - but the task of these bacteria is primarily to stabilise the intestines and create a favourable environment.

"The next generation of probiotics will pertain more to adding bacteria that integrate directly with the existing gut microbiome and make a lasting change to the composition," says Jens Nielsen.

The company Metabogen was founded based on collaboration between researchers at Chalmers and the University of Gothenburg and it will aim to develop these types of drugs.
-end-
Read the scientific article "Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome": http://www.cell.com/cell-metabolism/abstract/S1550-4131%2815%2900330-7

Chalmers University of Technology

Related Bacteria Articles:

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.