BioIVT publishes new research on the mechanisms underlying the C-DILI assay

September 10, 2018

Westbury, NY - Sept. 10, 2018 - BioIVT, a leading provider of research models and services for drug development, today announced its research into the mechanisms involved in cholestatic drug-induced liver injury (DILI) has been published in Applied In Vitro Toxicology.1

DILI is one of the primary causes of drug development failures. As a result, sponsors endeavor to identify new drug candidates with a high DILI risk early in the development process. Early cholestatic DILI screening efforts historically focused on a compound's potential to inhibit BSEP, a protein responsible for excretion of bile acids from the liver. However, BSEP inhibition potency is not always correlated with DILI suggesting that other mechanisms may be involved. BioIVT researchers demonstrated that BSEP inhibition ''triggers'' the activation of compensatory mechanisms that suppress bile acid synthesis and increase bile acid excretion through routes other than BSEP, thereby preventing hepatotoxicity.

"Cholestatic DILI is known to have a weak association with BSEP inhibition," said BioIVT Study Director and Lead Author Jonathan Jackson, PhD. "For the first time, our study demonstrated the 'link' between BSEP inhibition and FXR, a master regulator of bile acid homeostasis. FXR activation by BSEP inhibition may explain the weak concordance between BSEP inhibition potency and cholestatic DILI incidence. Many compounds inhibit BSEP; however, liver cells can compensate for the resulting increase in bile acid concentration. In fact, clinical observations show that increases in circulating bile acids are not always associated with DILI. Our discovery suggests a new paradigm is required to accurately predict a drug candidate's cholestatic DILI potential, and new methods are needed, such as our C-DILI Assay."

The C-DILI Assay integrates cellular compensatory mechanisms with BSEP inhibition. Because the assay accounts for the adaptive response observed in liver cells, it has been shown to have high in vitro-in vivo correlation among compounds known to have a risk of DILI. As part of their screening and drug development processes, pharmaceutical companies use the C-DILI Assay to assess hepatotoxicity potential of their lead compounds.
-end-
Reference

1. Jonathan P. Jackson, Kimberly M. Freeman, Robert L. St. ClaireIII, Chris B. Black, and Kenneth R. Brouwer. Applied In Vitro Toxicology. http://doi.org/10.1089/aivt.2018.0011.

About BioIVT

BioIVT, formerly BioreclamationIVT, is a leading global provider of research models and value-added research services for drug discovery and development. We specialize in control and disease-state biospecimens including human and animal tissues, cell products, blood and other biofluids. Our unmatched portfolio of clinical specimens directly supports precision medicine research and the effort to improve patient outcomes by coupling comprehensive clinical data with donor samples. Our PHASEZERO® Research Services team works collaboratively with clients to provide target and biomarker validation, phenotypic assays to characterize novel therapeutics, clinical assay development and in vitro hepatic modeling solutions. And as the premier supplier of ADME-toxicology model systems, including hepatocytes and subcellular fractions, BioIVT enables scientists to better understand the pharmacokinetics and drug metabolism of newly-discovered compounds and their effects on disease processes. By combining our technical expertise, exceptional customer service, and unparalleled access to biological specimens, BioIVT serves the research community as a trusted partner in elevating science. For more information, please visit http://www.bioivt.com or follow the company on Twitter @BioIVT.

Rana Healthcare Solutions LLC

Related Drug Development Articles from Brightsurf:

FDA support for oncology drug development during COVID-19
This Viewpoint from the U.S. Food and Drug Administration puts into context recent guidance on clinical trials during COVID-19 for oncology and shares insight regarding regulatory challenges and lessons learned.

COVID-19 drug development could benefit from approach used against flu
A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better -- they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.

Chemistry breakthrough could speed up drug development
Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.

New model of the GI tract could speed drug development
MIT engineers have devised a way to speed new drug development by rapidly testing how well they are absorbed in the small intestine.

Super-charging drug development for COVID-19
Researchers are using cell-free manufacturing to ramp up production of valinomycin, a promising drug that has proven effective in obliterating SARS-CoV in cellular cultures.

Drug development for rare diseases affecting children is increasing
The number of treatments for rare diseases affecting children has increased, a new study suggests.

New opportunity for cancer drug development
After years of research on cell surface receptors called Frizzleds, researchers at Karolinska Institutet in Sweden provide the proof-of-principle that these receptors are druggable by small molecules.

Novel paradigm in drug development
Targeted protein degradation (TPD) is a new paradigm in drug discovery that could lead to the development of new medicines to treat diseases such as cancer more effectively.

Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.

A breakthrough for brain tumor drug development
Glioblastoma is a devastating disease with poor survival stats due in part to a lack of preclinical models for new drug testing.

Read More: Drug Development News and Drug Development Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.