Nav: Home

Power of tiny vibrations could inspire novel heating devices

September 10, 2018

Ultra-fast vibrations can be used to heat tiny amounts of liquid, experts have found, in a discovery that could have a range of engineering applications.

The findings could in theory help improve systems that prevent the build-up of ice on aeroplanes and wind turbines, researchers say.

They could also be used to enhance cooling systems in smartphones and laptops, and make it possible to develop appliances that dry clothes more quickly using less energy.

Scientists have shown for the first time that tiny quantities of liquid can be brought to a boil if they are shaken at extreme speeds.

A team from the University of Edinburgh made the discovery using computer simulations.

Liquid layers one thousand times thinner than a human hair can be boiled using extremely rapid vibrations - a million times faster than the flapping of a hummingbird's wings.

The motion of the vibrating surface under the fluid is converted into heat as liquid molecules move and collide with each other, the team says.

It is only possible to use vibrations to boil extremely small quantities of liquid - contained within a few billionths of a meter above the vibrating surface, researchers say. Energy from vibrations applied to larger volumes instead produces tiny waves and bubbles, and only a very small amount of heat.

The team used the ARCHER UK National Supercomputing Service - which is operated by EPCC, the University's high-performance computing facility - to run its simulations.

The study, published in the journal Physical Review Letters, was supported by the Engineering and Physical Sciences Research Council.

Dr Rohit Pillai, of the University of Edinburgh's School of Engineering, who led the study, said: "Exploiting this new science of vibrations at the smallest scales could literally shake things up in our everyday lives. The advent of nanotechnology means that this discovery can underpin novel engineering devices of the future."
-end-


University of Edinburgh

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".