Understanding deep-sea images with artificial intelligence

September 10, 2018

The evaluation of very large amounts of data is becoming increasingly relevant in ocean research. Diving robots or autonomous underwater vehicles, which carry out measurements independently in the deep sea, can now record large quantities of high-resolution images. To evaluate these images scientifically in a sustainable manner, a number of prerequisites have to be fulfilled in data acquisition, curation and data management. "Over the past three years, we have developed a standardized workflow that makes it possible to scientifically evaluate large amounts of image data systematically and sustainably," explains Dr. Timm Schoening from the "Deep Sea Monitoring" working group headed by Prof. Dr. Jens Greinert at GEOMAR. The background to this was the project JPIOceans "Mining Impact". The ABYSS autonomous underwater vehicle was equipped with a new digital camera system to study the ecosystem around manganese nodules in the Pacific Ocean. With the data collected in this way, the workflow was designed and tested for the first time. The results have now been published in the international journal Scientific Data.

The procedure is divided into three steps: Data acquisition, data curation and data management, in each of which defined intermediate steps should be completed. For example, it is important to specify how the camera is to be set up, which data is to be captured, or which lighting is useful in order to be able to answer a specific scientific question. In particular, the meta data of the diving robot must also be recorded. "For data processing, it is essential to link the camera's image data with the diving robot's metadata," says Schoening. The AUV ABYSS, for example, automatically recorded its position, the depth of the dive and the properties of the surrounding water. "All this information has to be linked to the respective image because it provides important information for subsequent evaluation," says Schoening. An enormous task: ABYSS collected over 500,000 images of the seafloor in around 30 dives. Various programs, which the team developed especially for this purpose, ensured that the data was brought together. Here, unusable image material, such as those with motion blur, was removed.

All these processes are now automated. "Until then, however, a large number of time-consuming steps had been necessary," says Schoening. "Now the method can be transferred to any project, even with other AUVs or camera systems." The material processed in this way was then made permanently available for the general public.

Finally, artificial intelligence in the form of the specially developed algorithm "CoMoNoD" was used for evaluation at GEOMAR. It automatically records whether manganese nodules are present in a photo, in what size and at what position. Subsequently, for example, the individual images could be combined to form larger maps of the seafloor. The next use of the workflow and the newly developed programs is already planned: At the next expedition in spring next year in the direction of manganese nodules, the evaluation of the image material will take place directly on board. "Therefore we will take some particularly powerful computers with us on board," says Timm Schoening.
-end-
At the Digital Week in Kiel, he will present these and other evaluation methods for deep-sea image data using artificial intelligence methods in more detail. The lecture will take place on Tuesday, 11 September 2018, from 1 p.m. to 2 p.m. at the Seeburg, Düsternbrooker Weg 2, in 24105 Kiel. All interested parties are cordially invited.

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Artificial Intelligence Articles from Brightsurf:

Physics can assist with key challenges in artificial intelligence
Two challenges in the field of artificial intelligence have been solved by adopting a physical concept introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.

A survey on artificial intelligence in chest imaging of COVID-19
Announcing a new article publication for BIO Integration journal. In this review article the authors consider the application of artificial intelligence imaging analysis methods for COVID-19 clinical diagnosis.

Using artificial intelligence can improve pregnant women's health
Disorders such as congenital heart birth defects or macrosomia, gestational diabetes and preterm birth can be detected earlier when artificial intelligence is used.

Artificial intelligence (AI)-aided disease prediction
Artificial Intelligence (AI)-aided Disease Prediction https://doi.org/10.15212/bioi-2020-0017 Announcing a new article publication for BIO Integration journal.

Artificial intelligence dives into thousands of WW2 photographs
In a new international cross disciplinary study, researchers from Aarhus University, Denmark and Tampere University, Finland have used artificial intelligence to analyse large amounts of historical photos from WW2.

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.

New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.

Read More: Artificial Intelligence News and Artificial Intelligence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.