Study links BAP1 protein to tumor suppression in kidney, eye, bile duct and mesothelioma cancers

September 10, 2018

HOUSTON - Researchers at The University of Texas MD Anderson Cancer Center have shown how BRCA-associated protein 1 (BAP1) serves as a tumor suppressor gene in kidney, eye, bile duct, mesothelioma and other cancers by regulating a form of cell death called ferroptosis, opening up a potential new area of therapy research. Findings from the study, led by Boyi Gan, Ph.D., associate professor, Department of Experimental Radiation Oncology, were published in the Sept. 10 online issue of Nature Cell Biology.

"Although BAP1 is frequently mutated or deleted in a variety of cancers, the process by which it suppresses tumors remains unclear," said Gan. "Our study achieved a comprehensive identification of BAP1-regulated target genes and relevant biological processes in cancer cells, and identified a BAP1-mediated epigenetic mechanism linking ferroptosis to tumor suppression."

Ferroptosis is a recently identified form of regulated cell death caused by depletion of cystine, an amino acid vital to cancer cell growth and survival, and by overproduction of molecular carriers of oxygen known as reactive oxygen species (ROS) on lipids, which have been linked to cancer and are targets of some therapies.

"Ferroptosis is structurally, genetically and biochemically distinct from other forms of regulated cell death such as apopotosis," said Gan. "It is well established that cell death, most notably apoptosis, plays important roles in tumor suppression. The roles of and regulatory mechanisms of ferroptosis in tumor biology, however, still remain largely unexplored."

Gan's team described how BAP1 encodes a key enzyme which interacts with other enzymes and cellular components to regulate genes, resulting in tumor suppression via ferroptosis. The researchers found that treatment with a ROS inducer resulted in substantially more ferropotosis-related cell death in BAP1 cancer cells than in other similar cancer cells which do not express BAP1. They also discovered that BAP1 promotes ferroptosis by mediating repression of a cystine 'transporter' called SLC7A11.

"We showed that BAP1 inhibits tumor development partly through SLC7A11 and ferroptosis and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis," said Gan. "Together, our results uncover a previously unappreciated mechanism coupling ferroptosis to tumor suppression."
-end-
MD Anderson study team participants included: Yilei Zhang, Ph.D.; Xiaoguang Liu, Ph.D.; Zihua Gong, M.D., Ph.D.; Pranavi Koppula, Kapil Sirohi, Ph.D.; Xu Li, Ph.D.; Hyemin Lee, Ph.D.; Li Zhuang; Zhen-Dong Xiao, Ph.D.; and Junjie Chen, Ph.D., all of the Department of Experimental Radiation Oncology; Li Feng, Gang Chen, Ph.D., and Peng Huang, M.D., Ph.D., of the Department of Translational Molecular Biology; and Yongkun Wei, Ph.D., Mien-Chie Hung, Ph.D., of the Department of Molecular and Cellular Oncology.

Other participating institutions included: Baylor College of Medicine, Houston; Cleveland Clinic; China Medical University, Taichung, Taiwan; Westlake University, Hangzhou, China; and Sun Yat-Sen University, Guangzhou, China.

The study was funded by the National Institutes of Health (R01 CA181196, R01HG007538, R01CA193466, R01CA172724, and P30CA016672); the Cancer Prevention and Research Institute of Texas (RP170067); the Sister Institute Network Fund and Institutional Research Grant, MD Anderson; the Andrew Sabin Family Fellow Award; and the Ellison Medical Foundation New Scholar Award.

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.