Raising a glass to grapes' surprising genetic diversity

September 10, 2019

Here's a discovery well worth toasting: A research team led by Professor Brandon Gaut with the University of California, Irvine and Professor Dario Cantu with the University of California, Davis has deciphered the genome of the Chardonnay grape. By doing so, they have uncovered something fascinating: grapes inherit different numbers of genes from their mothers and fathers. Their paper has just been published in Nature Plants.

The team devoted three years of study to what are known as structural variants, or chromosome changes, in the genomes of the Chardonnay and Cabernet Sauvignon grapes to determine their genetic similarity. Each of the fruits has about 37,000 genes.

"Each of us inherits one copy of their gene from their mother and one from their father," said Professor Gaut. "One would assume that the grapes inherit two copies of every gene, too, with one coming from each of their two parents. However, we found there was just one copy, not two, for 15 percent of the genes in Chardonnay, and it was also true of Cabernet Sauvignon grapes. Together, that means that grape varieties differ in the presence or absence of thousands of genes."

"These genetic differences probably contribute to many of the differences in taste between wines made from different grape varieties" said Professor Cantu. And they definitely contribute to one important feature of grapes: their color.

The research team showed that red grapes have mutated into white grapes on several different occasions. Each mutation included a large chromosomal change that altered the number of copies of key color genes. Fewer copies of the color genes cause white grapes.

In addition to providing key scientific knowledge to vintners, the scientists say their findings have important implications for understanding the nutritional values among other fruits and vegetables. Structural variations have largely been unexplored in plant genomes, but Professor Gaut says the research is important for understanding what lies within the fruits and vegetables we eat. "For example, even between the various types of heirloom tomatoes, structural variations could account for differing nutritional values," he said. "Better understanding the genetic composition of species enables us to access tools that improve plant breeding."
-end-
Yongfeng Zhou with the UCI School of Biological Sciences Department of Ecology and Evolutionary Biology served as lead author of the paper. Support was provided by the National Science Foundation, J. Lohr Vineyards and Wines, E. & J. Gallo Winery, and the Louis P. Martini Endowment in Viticulture.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.