Nav: Home

Study explores role of mediator protein complex in transcription and gene expression

September 10, 2019

Did you know that the DNA in any cell of the human body - or any organism for that matter - contains the genetic information required to develop every possible type of cell within that organism? Yet cell types differ markedly from each other both structurally and functionally. This is manifest through the production of different proteins encoded in the genetic information of the cell.

How is the information in DNA expressed as different proteins in diverse cells, such as those in a human liver, brain, heart or, maybe more pressing to ask, in a cancerous tumour?

This kind of fundamental question is the focus of molecular biologists, particularly those with an evolutionary bent, who seek to understand how life evolved and how gene expression and cell development occur.

Dr. Jeffrey Fillingham, an associate professor in the Department of Chemistry and Biology at Ryerson University, and Dr. Ronald Pearlman, University Professor Emeritus in the Department of Biology at York University, are just the sort of molecular biologists who ask these basic questions. Among their areas of interest, the two researchers study transcription and gene expression.

"Transcription is the process by which the information contained in DNA is turned into RNA, which carries the messages that direct the synthesis of proteins involved in making a particular cell," says Pearlman. "The question is, 'how, when, why and where are genes activated so they can be transcribed into cell-specific proteins?'"

Recently, a team based at Fillingham's Ryerson research lab in the MaRS Discovery District explored this question, working with researchers in Pearlman's group at York University and supported by others in Dr. Jack Greenblatt's research group at the University of Toronto, as well as contributions from the SciNet HPC Consortium at the University of Toronto, along with Université Laval.

The team studied protein complexes involved in transcription using two experimental techniques: affinity purification and mass spectrometry. To do so, they looked at transcription in a single-cell eukaryotic (contains organelles such as the nucleus bounded by a membrane) model organism called Tetrahymena, which is an ideal system to study because it is easy to work with and manipulate molecularly, biochemically, and genetically, and grows quickly. Its genome has more evolutionary similarity to humans than other non-mammalian model research organisms.

The objective of the study was to better understand the function of a protein complex called Mediator, which plays a central role in gene expression through transcription, with particular focus on a protein called Med31, a subunit of the Mediator complex.

Med31 is interesting to molecular biologists because it has been conserved through millennia of evolutionary change, which means that highly similar versions of the protein are found in organisms as divergent as Tetrahymena and human beings. (Tetrahymena Med31 has approximately 42% sequence identity with human Med31.) Previous studies have demonstrated Med31 has ancient roots, is present in almost all organisms alive today, and plays a central role in cell development regulation in mammals.

These aspects of Med31 - and Mediator - lead to some interesting questions.

"The fact that Med31 is so conserved in evolution indicates that it plays some key fundamental role in transcription," says Fillingham. "What is it doing? What is its role? Those are questions the answers to which nobody has really got at yet."

The team's investigation shed some light on the functioning of Mediator and Med31 in Tetrahymena by suggesting some ways that Mediator may function in developmental regulation for organisms. The findings were published in an article called "The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation" in the highly-regarded journal Current Biology, one of several in the prestigious Cell Press stable of journals.

Current Biology's decision to publish the article is notable because it focuses on publication of research with a broad general interest, which means the journal editors and reviewers believe the findings of the Fillingham-led team are of interest and value to the wide biology community. What's also interesting is that another paper using the same Tetrahymena model system published in the same journal issue reached similar conclusions to this study by asking different research questions, which amplifies the veracity of the team's findings.

"In the field of transcription and gene expression, our findings are very interesting," says Fillingham. "People will be interested to know how Tetrahymena Mediator is functioning in gene regulation and what this tells us more generally about transcription and regulation of gene expression."
-end-
The three main contributors to the study were Pearlman's long-time research associate at York University, Dr. Jyoti Garg; Fillingham's current doctoral student at Ryerson, Alejandro Saettone; and Fillingham's former Master's student, Syed Nabeel-Shah, who is now a doctoral candidate in the Department of Molecular Genetics at the University of Toronto in Greenblatt's lab.

Other co-authors included Mathew Cadorin, another former Master's student in the Fillingham laboratory; Dr. Marcelo Ponce, a bioinformatician associated with the SciNet consortium; Dr. Susanna Marquez, a former bioinformatics postdoctoral fellow in the Pearlman lab; and Shuye Pu, a bioinformatician associated with the Greenblatt laboratory. Rounding out the team was Dr. Jean-Phillipe Lambert, Assistant Professor in the Department of Molecular Medicine at Université Laval, who contributed his expertise in mass spectrometry to the project.

Ryerson University - Faculty of Science

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.