Nav: Home

Researchers find earliest evidence of milk consumption

September 10, 2019

Researchers have found the earliest direct evidence of milk consumption anywhere in the world in the teeth of prehistoric British farmers.

The research team, led by archaeologists at the University of York, identified a milk protein called beta lactoglobulin (BLG) entombed in the mineralised dental plaque of seven individuals who lived in the Neolithic period around 6,000 years-ago.

The human dental plaque samples in the study are the oldest to be analysed for ancient proteins to date globally and the study represents the earliest identification of the milk whey protein BLG so far.

The Neolithic period in Britain ran from 4,000 to 2,400 cal. BC and saw the emergence of farming, with the use of domesticated animals such as cows, sheep, pig and goats, alongside crops such as wheat and barley. Archaeologists have also discovered evidence of complex cultural practices, with Neolithic communities building large monumental and burial sites.

The ancient human remains tested in the study come from three different Neolithic sites - Hambledon Hill and Hazleton North in the south of England, and Banbury Lane in the East Midlands. Individuals from all three sites showed the presence of milk proteins from cows, sheep or goats, suggesting people were exploiting multiple species for dairy products.

Dental plaque can offer unique insights into the diets of ancient people because dietary proteins are entrapped within it when it is mineralised by components of saliva to form tartar or 'dental calculus'.

Lead author of the study, Dr Sophy Charlton, from the Department of Archaeology at the University of York, said: "The fact that we found this protein in the dental calculus of individuals from three different Neolithic sites may suggest that dairy consumption was a widespread dietary practice in the past.

"It would be a fascinating avenue for further research to look at more individuals and see if we can determine whether there are any patterns as to who was consuming milk in the archaeological past - perhaps the amount of dairy products consumed or the animals utilised varied along the lines of sex, gender, age or social standing."

The discovery of milk proteins is particularly interesting as recent genetic studies suggest that people who lived at this time did not yet have the ability to digest the lactose in milk. To get around this, the ancient farmers may have been drinking just small amounts of milk or processing it into other foodstuffs such as cheese (which removes most of the lactose), the researchers say.

'Lactase persistence', which allows for the continued consumption of milk into adulthood, is the result of a genetic mutation in a section of DNA that controls the activity of the lactase gene. However, the mechanisms behind how and when we evolved this ability remain a mystery.

Dr Charlton added: "Because drinking any more than very small amounts of milk would have made people from this period really quite ill, these early farmers may have been processing milk, perhaps into foodstuffs such as cheese, to reduce its lactose content."

"Identifying more ancient individuals with evidence of BLG in the future may provide further insights into milk consumption and processing in the past, and increase our understanding of how genetics and culture have interacted to produce lactase persistence."
-end-


University of York

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...