Nav: Home

Future of portable electronics -- Novel organic semiconductor with exciting properties

September 10, 2019

Semiconductors are substances that have a conductivity between that of conductors and insulators. Due to their unique properties of conducting current only in specific conditions, they can be controlled or modified to suit our needs. Nowhere is the application of semiconductors more extensive or important than in electrical and electronic devices, such as diodes, transistors, solar cells, and integrated circuits.

Semiconductors can be made of either organic (carbon-based) or inorganic materials. Recent trends in research show that scientists are opting to develop more organic semiconductors, as they have some clear advantages over inorganic semiconductors. Now, scientists, led by Prof Makoto Tadokoro of the Tokyo University of Science, report on the synthesis of a novel organic substance with potential applications as an n-type semiconductor. This study is published in the journal Organic and Biomolecular Chemistry. According to Prof Makoto Tadokoro, "organic semiconductor devices, unlike hard inorganic semiconductor devices, are very soft and are useful for creating adhesive portable devices that can easily fit on a person." However, despite the advantages of organic semiconductors, there are very few known stable molecules that bear the physical properties of n-type semiconductors, compared to inorganic n-type semiconductors.

N-heteroheptacenequinone is a well-known potential candidate for n-type semiconductor materials. However, it has some drawbacks: it is unstable in air and UV-visible light, and it is insoluble in organic solvents. These disadvantages obstruct the practical applications of this substance as a semiconductor.

A team of Japanese scientists--Dr. Kyosuke Isoda (Faculty of Engineering and Design, Kagawa University; ex-Tokyo University of Science), Mr. Mitsuru Matsuzaka (ex-Tokyo University of Science), Dr. Tomoaki Sugaya (Chiba Institute of Technology, ex-Tokyo University of Science), and Prof Tadokoro--aimed to bridge this gap, and identified a novel substance called C6OAHCQ, derived from N-heteroheptacenequinone, that overcomes the drawbacks of N-heteroheptacenequinone.

To obtain this substance, N-heteroheptacenequinone was made to undergo four-step process of chemical reactions involving repetitive refluxing, evaporation, recrystallization, and heating. The final product achieved was C6OAHCQ, a red solid. C6OAHCQ has a unique crystalline near-planar structure involving two tetraazanaphthacene "backbones" and one benzoquinone backbone. It has eight electron-deficient imino-N atoms and two carbonyl moieties.

To confirm its electrochemical properties, C6OAHCQ was made to undergo a series of tests including a UV-visible absorption spectroscopy in the solution state, cyclic voltammetry, and theorical calculation of electrostatic potential. It was also compared with a tetraazapentacenequinone analog.

These tests revealed some unique properties of C6OAHCQ. The electron-deficient imino-N atoms and two carbonyl moieties in C6OAHCQ provide it with an electron-accepting behavior. In fact, the number of electrons accepted by C6OAHCQ is more than that by fullerene C60, which suggests improved conductivity. Cyclic voltammetry showed that C6OAHCQ exhibited reversible four-step, four-electron reduction waves, which indicated that C6OAHCQ is stable and has good electrostatic potential; the UV-visible spectroscopy also showed its stability in UV-visible light. C6OAHCQ also showed electrochromic properties, which enable its potential application in many specialized areas such as the development of smart windows, electrochromic mirrors, and electrochromic display devices. C6OAHCQ was also found to have excellent solubility in common organic solvents. It was overall found to be advantageous and had improved properties compared to the tetraazapentacenequinone analog.

The synthesis of organic C6OAHCQ is a new step forward in semiconductor research, due to its distinctive properties that distinguish it from existing organic semiconductors. C6OAHCQ is also a revolutionary step in the current research scenario dominated by inorganic semiconductors. Prof Tadokoro and team assert the importance of this novel substance, stating, "the identification of this organic acceptor molecular skeleton that has the property of stably receiving electrons is very important, as it can be used to develop molecular devices with new functionality. These devices are soft, unlike hard inorganic semiconductor devices, and can help to create portable devices."
-end-


Tokyo University of Science

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.