Numerical simulations probe mechanisms behind sand dune formation

September 10, 2019

WASHINGTON, D.C., September 10, 2019 -- If you've ever looked closely at a 3D sand or sediment dune within a river or coastal area, did you wonder how it formed?

After noticing how the construction of dams significantly alter the hydrodynamics of natural rivers and the resulting downstream riverbed evolution, a group of researchers at Tsinghua University in China decided to apply numerical simulations to help determine what's at play in the relationship of sediment motion and flow conditions. They report their findings in Physics of Fluids, from AIP Publishing.

The group's work was inspired in part by the impact of the Three Gorges Dam, which is a hydroelectric gravity dam that spans the Yangtze River. Since its construction in 2003, 11.7 kilometers (7.2 miles) of flat riverbed downstream within the Yangtze estuary was observed morphing into dune bedforms -- features that form as a result of riverbed material being moved by fluid flow.

"This bed morphology evolution threatened navigation safety and the stability of river dikes, because the mechanism of sediment dune formation was unknown," said Hongwei Fang, a professor at Tsinghua University.

The researchers set out to accurately simulate the fully turbulent flow near the riverbed and link it with the movement of sediment particles.

"We used large eddy simulation technology to obtain accurate near-bed instantaneous flow field, calculate the shear stresses acting on sediment particles and, finally, simulate the evolution of the riverbed," said Fang.

By using visualization and power spectra analysis, the researchers were able to characterize the formation of sediment dunes into three distinct stages and clearly show the mechanism responsible for each.

"Interaction of near-bed flow and sediment particles has been rigorously investigated, but it still wasn't exactly clear what was going on," said Fang. "Partitioning it into three stages helped us clarify this process."

"The initial defects that appear on the bed at the start of the process are closely tied to the instantaneous flow velocity right before the bed is destabilized," he said. "We also discovered that defects with a high instantaneous flow velocity get washed away, while defects with low instantaneous velocity receive sediment deposits and grow in length and height. And, further, a constant wake zone forms downstream of micro sand waves, where sediment accumulates."

As far as applications, this work will "help predict riverbed morphology evolution -- how it forms and changes -- within natural rivers," Fang said. "And it will allow prevention of potential hazards, such as riverbank failure or ship stranding."

Next, the group will explore river meandering, which poses a serious threat to rivers with dams.

"With our success simulating the evolution of riverbeds, we are confident of revealing the mechanism of river meandering, which is very important in river dike construction, lake river management and aquatic habitat protection," Fang said.
The article, "'Numerical simulations on producing three-dimensional sediment dunes," is authored by Y. Liu, H. Fang, L. Huang, and G. He. It will appear in Physics of Fluids on Sept. 10, 2019 (DOI: 10.1063/1.5108741). After that date, it can be accessed at


Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See

American Institute of Physics

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to