An overactive cerebellum causes issues across the brain

September 10, 2019

Japan -- Consider the cerebellum. That structure tucked into the lower back of your skull. Also known as the 'little brain' it plays a key role in regulating voluntary movement like balance, motor learning, and speech.

Recent evidence even shows the cerebellum involved in higher-order brain functions including visual response, emotion, and motor planning. And now, a team from Kyoto University has found another link, depressive behavior.

Writing in Cell Reports, the research team found -- through a series of experiments with rats -- that acute cerebellar inflammation puts the structure in an 'overexcited' state, resulting in the animal developing a temporary decrease in motivation and sociability.

Team leader Gen Ohtsuki of Kyoto University's Hakubi Center for Advanced Research explains that the investigation began in an effort to understand how the brain's immune system can change its activity. In fact, literature has shown correlations between cerebellar dysfunction and certain pervasive developmental disorders such as autism and depression.

"Even though we now know more about the cerebellum's role in higher order brain functions the detailed signal transduction machinery remains a mystery. We know even less about what happens in the brain during excessive immune activity." explains Ohtsuki. "So, we conducted series of experiments where we activated the immune cells in the cerebellum and observed the results."

The brain's immune cells are known as microglia, and they respond to bacteria and viruses to mitigate damage. That response results in inflammation. Utilizing electrophysiological techniques, the team found that microglia caused neurons to fire at an increased rate, a phenomenon known as 'intrinsic-plasticity'. This in turn caused the cerebellum to go into a 'hyperexcited' state.

This immune-triggered response was shown to even change behavior. When rats were induced with acute cerebellar inflammation, their sociability, free-searching, and motivation dramatically decreased.

"These behavioral modulations are signs of 'depression-like' behavior. Once the inflammation subsided, they were back to normal," Ohtsuki continues. "Moreover, the phenotype can be rescued if the rats are treated with neuro-immunity suppressants and inflammatory cytokines. We also investigated if higher order brain regions were affected. fMRI studies on the rats show a clear increase in activity in the prefrontal cortex, highlighting the interconnectedness of the cerebellum to higher order brain regions."

The team is encouraged of their results, but states that further investigation is needed.

"Excessive immune activity in the brain can induce behavioral pathology, and we expect it to be involved in other mental and cognitive disorders such as dementia. But to understand anything about the pathological mechanisms we need to combine this with additional data such as genetic risk factors," concludes Ohtsuki. "In this study, we focused on inflammation. In the future, we will begin firmly clarifying the physiological, molecular, and genetic aspects of these behavioral changes."
-end-
The paper "Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation" appeared on September 10, 2019 in the Cell Reports with doi: 10.1016/j.celrep.2019.07.078

The paper will be presented to the press at the Society for Neuroscience 49th annual Neuroscience 2019 meeting in Chicago, Il, USA

About Kyoto University

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Kyoto University

Related Immune Cells Articles from Brightsurf:

Gut immune cells may help send MS into remission
An international research team led by UCSF scientists has shown, for the first time, that gut immune cells travel to the brain during multiple sclerosis (MS) flare-ups in patients.

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.

Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.

Read More: Immune Cells News and Immune Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.