Nav: Home

Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons

September 10, 2019

LAWRENCE -- New findings from University of Kansas experimental nuclear physicists Daniel Tapia Takaki and Aleksandr (Sasha) Bylinkin were just published in the European Physical Journal C. The paper centers on work at the Compact Muon Solenoid, an experiment at the Large Hadron Collider, to better understand the behavior of gluons.

Gluons are elementary particles that are responsible for "gluing" together quarks and anti-quarks to form protons and neutrons -- so, gluons play a role in about 98% of all the visible matter in the universe.

Previous experiments at the now-decommissioned HERA electron-proton collider found when protons are accelerated close to light-speed, the density of gluons inside them increases very rapidly.

"In these cases, gluons split into pairs of gluons with lower energies, and such gluons split themselves subsequently, and so forth," said Tapia Takaki, KU associate professor of physics & astronomy. "At some point, the splitting of gluons inside the proton reaches a limit at which the multiplication of gluons ceases to increase. Such a state is known as the 'color glass condensate,' a hypothesized phase of matter that is thought to exist in very high-energy protons and as well as in heavy nuclei."

The KU researcher said his team's more recent experimental results at the Relativistic Heavy Ion Collider and LHC seemed to confirm the existence of such a gluon-dominated state. The exact conditions and the precise energy needed to observe "gluon saturation" in the proton or in heavy nuclei are not yet known, he said.

"The CMS experimental results are very exciting, giving new information about the gluon dynamics in the proton," said Victor Goncalves, professor of physics at Federal University of Pelotas in Brazil, who was working at KU under a Brazil-U.S. Professorship given jointly by the Sociedade Brasileira de Física and the American Physical Society. "The data tell us what the energy and dipole sizes are needed to get deeper into the gluonic-dominated regime where nonlinear QCD effects become dominant."

Although experiments at the LHC don't directly study interaction of the proton with elementary particles such as those of the late HERA collider, it's possible to use an alternative method to study gluon saturation. When accelerated protons (or ions) miss each other, photon interactions occur with the proton (or the ion). These near misses are called ultra-peripheral collisions (UPCs) as the photon interactions mostly occur when the colliding particles are significantly separated from each other.

"The idea that the electric charge of the proton or ions, when accelerated at ultra-relativistic velocities, will provide a source of quasi-real photons is not new," Tapia Takaki said. "It was first discussed by Enrico Fermi in the late 1920s. But it's only since the 2000s at the RHIC collider and more recently at the LHC experiments where this method has been fully exploited."

Tapia Takaki's group has played a significant role in the study of ultra-peripheral collisions of ions and protons at two instruments at the Large Hadron Collider, first at the ALICE Collaboration and more recently with the CMS detector.

"We have now a plethora of interesting results on ultra-peripheral heavy-ion collisions at the CERN's Large Hadron Collider," said Bylinkin, an associate researcher in the group. "Most of the results have been focused on integrated cross-sections of vector mesons and more recently on measurements using jets and studying light-by-light scattering. For the study of vector meson production, we are now doing systematic measurements, not only exploratory ones. We are particularly interested in the energy dependence study of the momentum transfer in vector meson production since here we have the unique opportunity to pin down the onset of gluon saturation."

The researchers said the work is significant because it's the first establishment of four measured points in terms of the energy of the photon-proton interaction and as a function of the momentum transfer.

"Previous experiments at HERA only had one single point in energy," Tapia Takaki said. "For our recent result, the lowest point in energy is about 35 GeV and the highest one is about 180 GeV. This does not sound like a very high energy point, considering that for recent J/psi and Upsilon measurements from UPCs at the LHC we have studied processes up to the 1000s GeV. The key point here is that although the energy is much lower in our Rho0 studies, the dipole size is very large."

According to team members, many questions remain unanswered in their line of research to better understand the makeup of protons and neutrons.

"We know that at the HERA collider there were already hints for nonlinear QCD effects, but there are many theoretical questions that have not been answered such as the onset of gluon saturation, and there are at least two main saturation models that we don't know yet which one is the closest to what nature says the proton is," said Goncalves. "We've used the latest results from the CMS collaboration and compared them to both the linear and nonlinear QCD-inspired models. We observed, for the first time, that the CMS data show a clear deviation from the linear QCD model at their highest energy point."
-end-
Tapia Takaki's group is funded by the Department of Energy, Office of Science, Nuclear Physics.

University of Kansas

Related Large Hadron Collider Articles:

The Large Hadron Collider -- the greatest adventure in town
World Scientific's latest book, 'The Large Hadron Collider,' homes in on the ATLAs Experiment to illustrate how and why this process happens, why it has an importance well beyond traditional spin-off and how it adds new meaning to the cost of this research and to the value of international collaboration.
Why odds are against a large Zika outbreak in the US
Is the United States at risk for a large-scale outbreak of Zika or other mosquito-borne disease?
Laser R&D focuses on next-gen particle collider
A set of new laser systems and proposed upgrades at Berkeley Lab's BELLA Center will propel long-term plans for a more compact and affordable ultrahigh-energy particle collider.
Physicist offers leading theory about mysterious Large Hadron Collider excess
K.C. Kong's idea: a sequence of particles at different masses -- without a 'resonance' particle at 750 GeV -- triggered the mystery signal at the Large Hadron Collider.
The large-scale stability of chromosomes
A new study led by the SISSA of Trieste and published in PLOS Computational Biology adds detail to the theoretical models used in chromatin simulations and demonstrates that even when made up of a mixture of fibres with different properties chromatin does not alter its three-dimensional structure above a certain spatial resolution.
More Large Hadron Collider News and Large Hadron Collider Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...