Nav: Home

Promising mobile technologies find methane leaks quickly, Stanford/EDF study finds

September 10, 2019

On trucks, drones and airplanes, 10 promising technologies for finding natural gas leaks swiftly and cheaply competed in the Mobile Monitoring Challenge, the first independent assessment of moving gas leak detectors at well sites. The organizers of the contest - Stanford University's Natural Gas Initiative and the Environmental Defense Fund - describe the outcomes in a study published Sept. 10 in Elementa by University of California Press.

While billed as a "challenge," the organizers had no intention of declaring a winner, as the technologies focused on different aspects of leak detection, such as exact location or size of the leak. While the technologies are still in development, overall, they all found gas leaks quite well.

Leaks in the production, processing and transport of natural gas emit methane - the main constituent of natural gas - into the atmosphere. A greenhouse gas, methane is 36 times more potent than carbon dioxide. In 2016, the U.S. Environmental Protection Agency moved to reduce methane emissions across the natural gas industry, which spurred the development of faster, less expensive detection technologies. Late last month, however, the EPA moved to roll back these methane regulations.

"The technologies are generally effective at detecting leaks, and can act as a first line of defense," said Adam Brandt, an associate professor of energy resources engineering and the senior author of the study. "Gas system operators will often want to confirm leaks with conventional optical gas imaging systems, but these mobile technologies usually tell you where to look for leaks very quickly."

A crew of two people using a conventional imaging system can visit four to six well pads a day. All the mobile technologies are considerably faster than that, though their speeds vary a lot. Plane-based systems work more quickly than trucks, which are faster than drones. Because worker time is a large part of detection cost, speeding up detection allows oil and gas companies to find more leaks while spending less money.

Results

As part of the Mobile Monitoring Challenge, nine corporations and a university research team participated last year at controlled testing facilities in Fort Collins, Colorado, and near Sacramento, California. All technologies were effective at detecting leaks. Eight of nine detected leaks correctly 75 percent of the time. (One technology did not have enough flights to be included in the study's summary.) Five of nine systems detected 90 percent or more of the leaks, including tiny emissions of one cubic foot of gas per hour.

However, most of the systems tested need to improve their ability to quantify the size of the leaks. Also, the technologies varied in their ability to detect the precise location of the leaks, though this is often by design.

For example, one startup's drone-based system detected 100 percent of leaks and had no false positives. Further, it accurately identified the leaking piece of equipment - rather than just the well pad - 84 percent of the time. However, when quantifying the size of leaks, the system's estimates were relatively close just 36 percent of the time. For the other eight systems, by the same relatively strict measure, quantification accuracy ranged from 18 to 53 percent.

"This is only the first step to demonstrating that these technologies could help reduce emissions on a level equivalent to existing approaches," Brandt said. "The tests were run in the spring of 2018, and I'm sure most - if not all - of these technologies have been improved since then."

Further advances could be in jeopardy, however.

"The recent U.S. EPA announcement about rolling back methane regulations is not just bad for the environment, but also deprives oil and gas communities of high-paying, local jobs that these innovative technology companies could create. Rolling back the regulations could stifle development of these technologies," said Arvind Ravikumar, lead author of the study. Ravikumar was a postdoctoral scholar at Stanford at the time of the project and is now an assistant professor at the Harrisburg University of Science & Technology.

An assessment like this can help regulators better understand these systems and provide a possible path to large-scale adoption for compliance purposes, the researchers said. The study examined finding leaks at production equipment that can be found in a gas field, not on finding below-ground leaks that might occur from pipes in cities.

Designs for different uses

The Mobile Monitoring Challenge was not a head-to-head competition because the technologies tested are designed to accomplish different things.

"No single technology can meet all the requirements for leak detection and quantification across the natural gas supply chain," Ravikumar said. "The key to large-scale deployment is to match the strength of each technology, like speed, accuracy and cost, with the right leak detection application. What works for a complex processing facility might not work for long-distance transmission pipelines."

The systems of some participants focus on identifying leaks only as coming from a cluster of equipment, which could include a wellhead, a separator and a tank, for example. In such cases, operators would use optical gas imaging systems or similar technology to identify the specific source of the leak before initiating repairs.

Similarly, two of the technologies tested are designed to quickly find big leaks, rather than all leaks. More than half the methane lost in natural gas production and processing comes from just 5 percent of leaks. Finding and fixing these "super-emitters" is critical to reducing methane emissions.

Even without strict regulations, natural gas companies could reduce emissions voluntarily. Inexpensive detectors combined with focused use of optical gas imaging systems could pay for themselves by reducing losses of company product. This is particularly true in parts of the world where natural gas prices are higher than in North America.
-end-
Adam Brandt is also a senior fellow of Stanford's Precourt Institute for Energy. Co-authors of the paper from Stanford are PhD candidates Sindhu Sreedhara and Jingfan Wang, and alumni Jacob Englander and Daniel Roda-Stuart. Co-authors from Colorado State University are research scientist Clay Bell and senior research associate Daniel Zimmerle. Co-authors from the Environmental Defense fund are scientist David Lyon, senior manager Isabel Mogstad and senior director Ben Ratner.

This research was funded by Stanford's Natural Gas Initiative and the Environmental Defense Fund.

Stanford University

Related Methane Articles:

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.