Nav: Home

Nanophysics - Spectral classification of excitons

September 10, 2020

Owing to their astonishing and versatile properties, atomically thin monolayer and bilayer forms of semiconducting transition metal dichalcogenides have aroused great interest in recent years. Most attention has so far been paid to the optical properties of these materials, such as molybdenum sulfide (MoS) and tungsten diselenide (WSe2). These compounds show great promise as nanoscale elements for applications in opto-electronic and quantum technologies. In a new study, LMU physicists led by Alexander Högele have now developed a theoretical model, which describes the effects of magnetic fields on the behavior of 'excitons' in two-dimensional ultrathin transition metal dichalcogenides. Excitons are strongly bound 'quasiparticles', composed of an electron in the conduction band and its positively charged counterpart in the valence band referred to as a 'hole'. In the presence of strong magnetic fields, the energy states of such quasiparticles (i.e. the frequencies at which they emit and absorb light) split up. This spectral splitting can be experimentally measured and - more importantly in the present context - it can also be theoretically predicted.

In the new study, the team cooled monolayer and bilayer samples of WSe2 to the temperature of liquid helium of a few degrees Kelvin. The researchers then used optical spectroscopy to measure the emission spectra as a fucntion of magnetic field up to 9 Tesla and determined the field-induced splitting. "Measurements like this are useful to study excitons, which in turn determine the light-matter interaction of semiconductors", Högele explains.

It was already known that excitons can form in different configurations. In addition to bright excitons, which couple directly to light, the pairing of electrons and holes can produce 'spin-dark' and 'momentum-dark' excitons. Up to now, it has not been possible to conclusively assign the signatures observed in emission spectra to these different exciton species. In the presence of magnetic field, however, individual emission peaks exhibit characteristic spectral splittings. "This splitting can be used to discriminate between the various types of excitons," says Högele, "but only if we have the according theoretical model." The LMU team developed theory to calculate from first principles the spectral splitting for the different types of excitons in monolayer and bilayer WSe2 subjected to magnetic field, and compared their theoretical predictions with the experimental data.

The results provide a better understanding of the opto-electronic properties of WSe2 and related transition-metal dichalcogenides where excitons represent the primary interface for light to interact with nanoscale matter. Ultrathin layers of WSe2 serve as a testbed for technological exploitations of light-matter coupling in opto-electronic devices including photodetectors and emitters or photovoltaic devices. "These ultrathin materials are mechanically flexible and extremely compact", says Högele. They are also potentially viable for quantum technologies as they host 'valleys' as quantum degrees of freedom that can serve as qubits, the basic units of information processing in quantum computers.

Ludwig-Maximilians-Universität München

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.