UCLA study shows how interferon-gamma guides response to cancer immunotherapy

September 10, 2020


A new study by researchers at the UCLA Jonsson Comprehensive Cancer Center sheds light on how interferon-gamma (IFN-y), an immune response-stimulating signaling molecule that helps activate immune cells, guides the treatment response in people with advanced melanoma who are treated with one of the leading immunotherapies -- immune checkpoint blockade.

The team pinpointed two main drivers that help the immune system efficiently attack the cancer: The magnitude of T cell infiltration of the tumor that results from the release of the immune checkpoint blockade and the corresponding downstream interferon-gamma signaling. Blocking immune checkpoints that previously limited the attack on cancer cells drives the expression of interferon-gamma signaling, which amplifies the antitumor immune response leading to the clinical responses induced by cancer immunotherapy.

"What the data shows is that immune checkpoint blockade therapy works when a preexisting immune response against the cancer can be amplified," said senior author Dr. Antoni Ribas, professor of medicine at the David Geffen School of Medicine at UCLA and director of the Tumor Immunology Program at the UCLA Jonsson Comprehensive Cancer Center. "The cancer is blocking how the immune system attacks cancer cells by the immune checkpoints (called CTLA-4 and PD-1). And whenever we've released them, then there's an increased immune activation that depends on the strength of the T cells to produce an immune activating cytokine called interferon gamma, resulting in the activation of over 600 genes that amplify the antitumor immune response."


Despite the groundbreaking success of immunotherapies, which harness the body's own immune system to better attack cancer cells, only a small subset of patients benefit from the cancer therapy. Researchers continue to investigate the therapies using genomic sequencing to better understand what immune checkpoint blockade does in patients with cancer so they can overcome limitations and expand the therapy to work in more people.


Researchers analyzed baseline and on-therapy biopsies by genomic sequencing at both the DNA and RNA level from melanoma tumors of 101 patients treated with the anti-PD-1 antibody nivolumab, or with the combination of nivolumab and the anti-CTLA-4 antibody ipilimumab, which are two cancer immunotherapy drugs. They looked at the changes from before the treatment and while on the treatment to see which genes were on or off for both patients who had a clinical response to the treatment and for patients who did not have a clinical response. This allows researchers to see how the immune response changes over time and focus on the genes that the cancer cells turn on when the immune system is productive. This turned out to be interferon-gamma response genes, and the ability to respond to interferon-gamma by turning on and off the same set of response genes was conserved in the great majority of cancer cells.


The findings open the door to further test interferon-gamma genes as a way to predict a response to immunotherapy and for exploring new combination treatments that induce interferon signaling that can be expanded to more patients.

The study's senior author is Dr. Antoni Ribas, professor of medicine at the David Geffen School of Medicine at UCLA and director of the Tumor Immunology Program at the UCLA Jonsson Comprehensive Cancer Center. The first author is Catherine Grasso, a former scientist at the UCLA Jonsson Comprehensive Cancer Center. Gasso is now at Cedars-Sinai Medical Center.


The study was published online in Cancer Cell.


The work was supported by the Parker Institute for Cancer Immunotherapy, the Cancer Research Institute-Stand Up 2 Cancer and the Melanoma Research Alliance.

The UCLA Jonsson Comprehensive Cancer Center has more than 500 researchers and clinicians engaged in cancer research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the UCLA Jonsson Comprehensive Cancer Center is dedicated to promoting research and translating basic science into leading-edge clinical studies.

University of California - Los Angeles Health Sciences

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.