Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics

September 10, 2020

It is established that matter can transition between different phases when certain parameters, such as temperature, are changed. Although phase transitions are common (like water turning into ice in a freezer), the dynamics that govern these processes are highly complex and constitute a prominent problem in the field of nonequilibrium physics.

When a system undergoes a phase transition, matter in the new phase has many possible energetically equal "configurations" to adopt. In these cases, different parts of the system adopt different configurations over regions called "domains." The interfaces between these domains are known as topological defects and reducing the number of these defects formed can be immensely valuable in many applications.

One common strategy to reduce defects is easing the system through the phase transition slowly. In fact, according to the "Kibble-Zurek" mechanism (KZM), it is predicted that the average number of defects and the driving time of the phase transition follow a universal power law. However, experimentally testing the KZM in a quantum system has remained a coveted goal.

In a recent study published in Physical Review Research, a team of scientists led by Professor Emeritus Hidetoshi Nishimori from Tokyo Institute of Technology, Japan, probed the validity of the KZM in two commercially available quantum annealers, a type of quantum computer designed for solving complex optimization problems. These devices, known as D-Wave annealers, can recreate controllable quantum systems and control their evolution over time, providing a suitable experimental testbed for the KZM.

First, the scientists checked whether the "power law" between the average number of defects and the annealing time (driving time of the phase transition) predicted by the KZM held for a quantum magnetic system called the "one-dimensional transverse-field Ising model." This model represents the orientations (spins) of a long chain of "magnetic dipoles," where homogenous regions are separated by defects seen as neighboring spins pointing in incorrect directions.

While the original prediction of the KZM regarding the average number of defects was valid in this system, the scientists took it a step further: although this extension of the KZM was originally intended for a completely "isolated" quantum system unaffected by external parameters, they found good agreement between its predictions and their experimental results even in the D-Wave annealers, which are "open" quantum systems.

Excited by these results, Prof Nishimori remarks: "Our work provides the first experimental test of universal critical dynamics in a many-body open quantum system. It also constitutes the first test of certain physics beyond the original KZM, providing strong experimental evidence that the generalized theory holds beyond the regime of validity theoretically established."

This study showcases the potential of quantum annealers to perform simulations of quantum systems and also helps gain insight on other areas of physics. In this regard, Prof Nishimori states: "Our results leverage quantum annealing devices as platforms to test and explore the frontiers of nonequilibrium physics. We hope our work will motivate further research combining quantum annealing and other universal principles in nonequilibrium physics." Hopefully, this study will also promote the use of quantum annealers in experimental physics. After all, who doesn't love finding a new use for a tool?
-end-


Tokyo Institute of Technology

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.