Nav: Home

Quirky response to magnetism presents quantum physics mystery

September 10, 2020

UPTON, NY--The search is on to discover new states of matter, and possibly new ways of encoding, manipulating, and transporting information. One goal is to harness materials' quantum properties for communications that go beyond what's possible with conventional electronics. Topological insulators--materials that act mostly as insulators but carry electric current across their surface--provide some tantalizing possibilities.

"Exploring the complexity of topological materials--along with other intriguing emergent phenomena such as magnetism and superconductivity--is one of the most exciting and challenging areas of focus for the materials science community at the U.S. Department of Energy's Brookhaven National Laboratory," said Peter Johnson, a senior physicist in the Condensed Matter Physics & Materials Science Division at Brookhaven. "We're trying to understand these topological insulators because they have lots of potential applications, particularly in quantum information science, an important new area for the division."

For example, materials with this split insulator/conductor personality exhibit a separation in the energy signatures of their surface electrons with opposite "spin." This quantum property could potentially be harnessed in "spintronic" devices for encoding and transporting information. Going one step further, coupling these electrons with magnetism can lead to novel and exciting phenomena.

"When you have magnetism near the surface you can have these other exotic states of matter that arise from the coupling of the topological insulator with the magnetism," said Dan Nevola, a postdoctoral fellow working with Johnson. "If we can find topological insulators with their own intrinsic magnetism, we should be able to efficiently transport electrons of a particular spin in a particular direction."

In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, Nevola, Johnson, and their coauthors describe the quirky behavior of one such magnetic topological insulator. The paper includes experimental evidence that intrinsic magnetism in the bulk of manganese bismuth telluride (MnBi2Te4) also extends to the electrons on its electrically conductive surface. Previous studies had been inconclusive as to whether or not the surface magnetism existed.

But when the physicists measured the surface electrons' sensitivity to magnetism, only one of two observed electronic states behaved as expected. Another surface state, which was expected to have a larger response, acted as if the magnetism wasn't there.

"Is the magnetism different at the surface? Or is there something exotic that we just don't understand?" Nevola said.

Johnson leans toward the exotic physics explanation: "Dan did this very careful experiment, which enabled him to look at the activity in the surface region and identify two different electronic states on that surface, one that might exist on any metallic surface and one that reflected the topological properties of the material," he said. "The former was sensitive to the magnetism, which proves that the magnetism does indeed exist in the surface. However, the other one that we expected to be more sensitive had no sensitivity at all. So, there must be some exotic physics going on!"

The measurements

The scientists studied the material using various types of photoemission spectroscopy, where light from an ultraviolet laser pulse knocks electrons loose from the surface of the material and into a detector for measurement.

"For one of our experiments, we use an additional infrared laser pulse to give the sample a little kick to move some of the electrons around prior to doing the measurement," Nevola explained. "It takes some of the electrons and kicks them [up in energy] to become conducting electrons. Then, in very, very short timescales--picoseconds--you do the measurement to look at how the electronic states have changed in response."

The map of the energy levels of the excited electrons shows two distinct surface bands that each display separate branches, electrons in each branch having opposite spin. Both bands, each representing one of the two electronic states, were expected to respond to the presence of magnetism.

To test whether these surface electrons were indeed sensitive to magnetism, the scientists cooled the sample to 25 Kelvin, allowing its intrinsic magnetism to emerge. However only in the non-topological electronic state did they observe a "gap" opening up in the anticipated part of the spectrum.

"Within such gaps, electrons are prohibited from existing, and thus their disappearance from that part of the spectrum represents the signature of the gap," Nevola said.

The observation of a gap appearing in the regular surface state was definitive evidence of magnetic sensitivity--and evidence that the magnetism intrinsic in the bulk of this particular material extends to its surface electrons.

However, the "topological" electronic state the scientists studied showed no such sensitivity to magnetism--no gap.

"That throws in a bit of a question mark," Johnson said.

"These are properties we'd like to be able to understand and engineer, much like we engineer the properties of semiconductors for a variety of technologies," Johnson continued.

In spintronics, for example, the idea is to use different spin states to encode information in the way positive and negative electric charges are presently used in semiconductor devices to encode the "bits"--1s and 0s--of computer code. But spin-coded quantum bits, or qubits, have many more possible states--not just two. This will greatly expand on the potential to encode information in new and powerful ways.

"Everything about magnetic topological insulators looks like they're right for this kind of technological application, but this particular material doesn't quite obey the rules," Johnson said.

So now, as the team continues their search for new states of matter and further insights into the quantum world, there's a new urgency to explain this particular material's quirky quantum behavior.
This work was funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Follow @brookhavenlab on Twitter and Facebook

Related Links

An electronic version of this news release with related graphics

Scientific paper: "Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4"

APS Physics story: "An Intrinsically Magnetic Topological Insulator"

Media contacts: Karen McNulty Walsh [], (631) 344-8350, or Peter Genzer [], (631) 344-3174

DOE/Brookhaven National Laboratory

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.