Researchers reveal safeguarding of key DNA sensor in innate immune system

September 10, 2020

CHAPEL HILL, NC - September 10, 2020 - UNC-Chapel Hill researchers have, for the first time, determined the high-resolution structure of a key DNA-sensing protein in the innate immune system called cGAS while it is bound to the nucleosome - the all-important unit of DNA packaging inside a cell's nucleus.

This research, published in Science, reveals in detail how the nucleosomes inside our cells block cGAS from unintentionally triggering the body's innate immune response to our own DNA. The work was led by Qi Zhang, PhD, associate professor of biochemistry and biophysics at the UNC School of Medicine, and Robert McGinty, MD, PhD, assistant professor of chemical biology and medicinal chemistry at the UNC Eshelman School of Pharmacy.

"Detecting and responding to foreign DNA from bacterial and viral pathogens is one of the most fundamental mechanisms for host defense," said Zhang, co-senior author. "A deeper understanding of functions and regulations of this important DNA sensor will have profound impacts on both basic research and translational development of cGAS-targeted therapeutics crucial to the betterment of human health."

McGinty, co-senior author, said, "This work was enabled by recent advances in cryo-electron microscopy technology that allows scientists, like those on our team, to observe the protein machines inside our cells with unprecedented clarity. By seeing how these proteins function normally, we can gain insights into how to manipulate their functions to treat diseases."

In the mammalian innate immune system, the protein cyclic GMP-AMP synthase (cGAS) detects foreign or damaged "self" DNAs. Upon DNA detection, cGAS synthesizes cyclic GMP-AMP (cGAMP), the second messenger molecule that activates the cGAS-STING signaling pathway to fight infections, inflammatory diseases, and cancers.

Because cGAS is a "universal" DNA sensor, it must be regulated to differentiate pathogenic DNA from the body's own healthy DNA to avoid any unintended immune responses. Previous research has shown that cGAS is enriched inside the nucleus where our genomic DNA is stored, but it remains a mystery as how cGAS ignores our own healthy DNA.

Using the UNC School of Medicine state-of-the-art Cryo-Electron Microscopy Core Facility, which was established in 2019, the Zhang and McGinty labs determined a 3.3Å-resolution cryo-EM structure of cGAS in complex with the nucleosome. The structure shows that cGAS employs two conserved amino acids to anchor to a negatively charged patch on the nucleosome surface. These protein-protein interactions allow the nucleosome to occupy a critical DNA sensing surface on cGAS and prevent cGAS from entering its functionally active DNA-bound state. Together with mutagenesis and functional assays, this study provides a near-atomic resolution depiction of how cGAS maintains the resting, inhibited state in the nucleus.

"These findings reshape the current paradigm of cGAS regulation and exemplify the role of the nucleosome in regulating diverse protein functions," said McGinty, who holds a joint faculty appointment at the UNC School of Medicine.

Zhang added, "Biomedical scientists will be able to apply our research to fields such as immunology, cancer biology, and gene regulation, as well as to drug discovery for infections, inflammatory diseases, and cancers."
This paper is published online by the journal Science on Thursday, 10 September, 2020. DOI information for this paper published via First Release is as follows: 10.1126/science.abd0609

Zhang and McGinty are members of the UNC Lineberger Comprehensive Cancer Center.

First authors of the Science paper are Joshua Boyer, PhD, a postdoctoral fellow in the Zhang lab; Cathy Spangler, a graduate student in the McGinty lab; and Joshua Straus, PhD, assistant professor of biochemistry and biophysics and director of the CryoEM Core Facility at UNC-Chapel Hill. Other authors are Andrew Cesmat, a former technician at the UNC Eshelman School of Pharmacy who is currently a medical student at UNC, and Pengda Liu, PhD, assistant professor in the UNC Department of Biochemistry and Biophysics.

Funding for this research was provided through grants from the National Institutes of Health, a UNC School of Medicine Jefferson Pilot Fellowship to Qi Zhang, and Searle Scholars and Pew-Stewart Scholars awards to Robert McGinty. The Cryo-Electron Microscopy Facility, which is partially supported by the NIH, is part of the Molecular Microscopy Consortium of the University of North Carolina at Chapel Hill, Duke University, and the National Institute of Environmental Health Sciences.

Media contact: Mark Derewicz, 919-923-0959

University of North Carolina Health Care

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to