MIT tool impacts multi-billion dollar drug

September 11, 2000

CAMBRIDGE, Mass.-- MIT scientists and colleagues announce work that could impact the multi-billion dollar heparin industry and change how the FDA regulates that common anti-clotting drug. The work is the first application of a novel analytical tool announced by the same core group of researchers last fall. Other important applications promise to follow.

"Periods of great discovery in science are almost always preceded by the development of new tools," writes Professor Matthew A. Nugent of Boston University in the September 12 issue of the Proceedings of the National Academy of Sciences. His commentary accompanies two articles by the MIT researchers describing the heparin work.

The new analytical tool probes the mysterious world of complex sugars. Although these compounds have recently been shown to play important roles in processes from viral infection to tissue development, "the field has lagged far behind the mainstream work on proteins and DNA," said Ram Sasisekharan, an associate professor in the Division of Bioengineering and Environmental Health (BEH) and leader of the MIT team.

That's because the complex sugars have many more building blocks than their better-known cousins, DNA and proteins, making them more difficult to study. The MIT tool is a quick, easy way to determine the structure, or order of building blocks, in these sugars (MIT Tech Talk 10/20/1999). "Once you have the sequence of building blocks for a given polysaccharide, you can start cracking its function in the body," said Professor Sasisekharan.

Similar sequencing techniques for DNA and proteins have been instrumental in shaping the biotechnology industry and have led to applications making those compounds household names. With the new tool, "we hope to articulate that these sugars are also fundamental to biology--that they're a new and important frontier," said Ganesh Venkataraman, a research associate in the Harvard-MIT Division of Health Sciences and Technology.

Authors of the PNAS papers are Professor Sasisekharan, Dr. Venkataraman, BEH graduate students Zachary Shriver and Rahul Raman, BEH Postdoctoral Fellow Mallikarjun Sundaram, Katherine Drummond and Jeremy Turnbull of the University of Birmingham (United Kingdom), Toshihiko Toida of Chiba University (Japan); Robert Linhardt of the University of Iowa, Jawed Fareed of the University of Loyola, and MIT Professor Emeritus Klaus Biemann of chemistry.

One of the most clinically important sugars is heparin, a compound with a variety of important interactions within the body. For example, doctors have used this compound in surgeries since 1935 to prevent blood clots that can cause strokes and heart disease.

In the work reported in the first PNAS paper, the researchers used the new tool to determine the sequence of a heparin fragment known to have anticoagulation activity and produced by a common technique. They got a surprise. Their results didn't agree with the sequence reported earlier by other scientists. After re-checking the structure via other, more time-intensive tools, the new sequence stands.

The new sequence reveals that the heparin fragment produced by this particular technique contains only a partial active site, or area key to anticoagulation activity. And that, in turn, affects drug activity. The second PNAS paper proves this.

The work has even wider implications. Until now there's been no quick and easy way to determine the composition of heparin produced by any technique. The same is true for a newer generation of heparin products called low molecular weight heparin (LMWH). As a result, the strength of both drugs varies from manufacturer to manufacturer; even from batch to batch. "So the MIT tool could change how the FDA will probably handle heparin," Dr. Venkataraman said.

Professor Sasisekharan emphasizes that commercially available heparin is still quite safe. Doctors have over 50 years of experience in using the drug. "We're simply hoping to use this new tool to make the drug more consistent and hence better," Dr. Venkataraman said.

The team is currently working to make the technology commercially available. Patents are pending. "Our hope is that sugar sequencing will become as commonplace as for DNA and proteins," Professor Sasisekharan said.

The work is funded in part by the Arnold and Mabel Beckman Foundation, the NIH, and a Whitaker Health Sciences Fund Fellowship.
Contact: Elizabeth Thomson
Phone: 617-258-5402
Call 202-334-2138 or

Massachusetts Institute of Technology

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to